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Preface for the Instructor

This book arose from discussions about the undergraduate mathe-
matics curriculum. We asked several questions. Why do students find it
difficult to write proofs? What is the role of discrete mathematics? How
can the curriculum better integrate diverse topics? Perhaps most impor-
tant, why don’t students enjoy and appreciate mathematics as much as
we might hope?

Upperclass courses in mathematics expose serious gaps in the prepa-
ration of students; the difficulties are particularly evident in elementary
real analysis courses. Such courses present two obstacles to students.
First, the concepts of analysis are subtle; it took mathematicians centuries
to understand limits. Second, proofs require both attention to exposition
and a different intellectual attitude from computation. The combination
of these difficulties defeats many students. Basic courses in linear or
abstract algebra pose similar difficulties and can be overly formal.

Due to their specialized focus, upperclass courses cannot adequately
address the issue of careful exposition. If students first learn techniques
of proof and habits of careful exposition, then they will better appreciate
more advanced mathematics when they encounter it.

The excitement of mathematics springs from engaging problems. Stu-
dents have natural mathematical curiosity about problems such as those
listed in the Preface for the Student. They then care about the techniques
used to solve them; hence we use these problems as a focus of develop-
ment. We hope that students and instructors will enjoy this approach as
much as we have.

A course introducing techniques of proof should not specialize in one
area of mathematics; later courses offer ample opportunities for special-
ization. This book considers diverse problems and demonstrates relation-
ships among several areas of mathematics. One of the authors studies
complex analysis in several variables, the other studies discrete math-
ematics. We explored the interactions between discrete and continuous
mathematics to create a course on problem-solving and proofs.

ix
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When we began the revisions for the second edition, neither of us had
any idea how substantial they would become. We are excited about the
improvements. Our primary aim has been to make the book easier to
use by making the treatment more accessible to students, more mathe-
matically coherent, and better arranged for the design of courses. In the
remainder of this preface we discuss the changes in more detail; here we
provide a brief summary.

e We added almost 300 exercises; many are easy and/or check basic un-
derstanding of concepts in the text.

o We added sections called “How to Approach Problems” in Chapters 1-5
and 13-14 to help students get started on the exercises.

o We greatly expanded Appendix B: “Hints for Selected Exercises”.

e Chapters 1-4 form the core of a coherent “Transition” course that can
be completed in various ways using initial sections of other chapters.

e The real number system is the starting point. All discussion of the
construction of R from N is in Appendix A.

e Induction comes earlier, immediately following the background material
discussed in Chapters 1 and 2.

e Individual chapters have a sharper focus, and the development flows
more smoothly from topic to topic.

e Terms being defined are in bold type, mostly in Definition items.

e The language is friendlier, the typography better, and the proofs a bit
more patient, with more details.

Content and Organization

Our text presents elementary aspects of algebra, number theory, com-
binatorics, and analysis. We cover a broad spectrum of material that illus-
trates techniques of proof and emphasizes interactions among the topics.

Part I (Elementary Concepts) begins by deriving the quadratic for-
mula and using it to motivate the axioms for the real numbers, which
we agree to assume. We discuss inequalities, sets, logical statements,
and functions, with careful attention to the use of language. Chapter 1
establishes the themes of mathematical discussion: numbers, sets, and
functions. We added lively material on inequalities and level sets. The
background terminology about functions moved to Chapter 1. The more
abstract discussion of injections and surjections appears in Chapter 4, in-
troduced by the base g representation of natural numbers. This allows
induction to come early; the highlight of Part I is the use of induction to
solve engaging problems. Part I ends with an optional treatment of the
Schroeder-Bernstein Theorem.
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Part II (Properties of Numbers) studies N, Z, and Q. We explore ele-
mentary counting problems, binomial coefficients, permutations (as func-
tions), prime factorization, and the Euclidean algorithm. Equivalence
relations lead to the discussion of modular arithmetic. We emphasize ge-
ometric aspects of the rational numbers. Features include Fermat’s Little
Theorem (with several proofs), the Chinese Remainder Theorem, criteria
for irrationality, and the description of Pythagorean triples.

Part III (Discrete Mathematics) explores more subtle combinatorial
arguments. We consider conditional probability and discrete random vari-
ables, the pigeonhole principle, the inclusion-exclusion principle, graph
theory, and recurrence relations. Highlights include Bertrand’s Ballot
Problem (Catalan numbers), Bayes’ Theorem, Simpson’s Paradox, Euler’s
totient function, Hall’s Theorem on systems of distinct representatives,
Platonic solids, and the Fibonacci numbers. With the focus on probability
in Chapter 9, the optional discussion of generating functions has moved
to the end of Chapter 12, where it is used to solve recurrences.

Part IV (Continuous Mathematics) begins with the Least Upper
Bound Property for R and its relation to decimal expansions and un-
countability of R. We prove the Bolzano-Weierstrass Theorem and use it
to prove that Cauchy sequences converge. We develop the theory of cal-
culus: sequences, series, continuity, differentiation, uniform convergence,
and the Riemann integral. We define the natural logarithm via integra-
tion and the exponential function via infinite series, and we prove their
inverse relationship. Defining sine and cosine via infinite series, we use
results on interchange of limiting operations to verify their properties
(we do not rely on geometric intuition for technical statements). We in-
clude convex functions and van der Waarden’s example of a continuous
and nowhere differentiable function, but we omit many applications cov-
ered adequately in calculus courses, such as Taylor polynomials, analytic
geometry, Kepler’s laws, polar coordinates, and physical interpretations
of derivatives and integrals. Finally, we develop the properties of complex
numbers and prove the Fundamental Theorem of Algebra.

In Appendix A we develop the properties of arithmetic and construct
the real number system using Cauchy sequences. There we begin with
N and subsequently construct Z, Q, and R. This foundational material
establishes the properties of the real number system that we assume in
the text. We leave this material to Appendix A because most students
do not appreciate it until after they become familiar with writing proofs.
Beginning instead by assuming the real numbers makes the theoretical
development flow smoothly and keeps the interest of the students.

Chapters 1 and 2 provide the language for subsequent mathemati-
cal work. Formal discussion of mathematical language is problematic;
students master techniques of proofs through examples of usage, not via
memorization of terminology and symbolism of formal logic. Instead of for-
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mal manipulation of logical symbols, we emphasize the understanding of
words. After the discussion in Chapter 2 that emphasizes the use of logic,
familiarity with logical concepts is conveyed by repeated use throughout
the book. Chapter 2 can be treated lightly in class; students can refer to
it when they need help manipulating logical statements.

The rearrangement of material in Part I makes it more accessible to
students and avoids using results before they can be proved. Students
find induction easier and less abstract than bijections, and now it comes
first. Placing the basic language about functions in Chapter 1 allows them
to be used as a precise concept in Chapter 2, allows us to prove needed
statements about them by induction in Chapter 3, and permits a sharper
focus on the properties of injections and surjections in Chapter 4.

The material in Part II has been reorganized to give the chapters a
clearer focus and to place the more fundamental material early in each
chapter. Instead of combining cardinality and counting in Chapter 5, the
material on cardinality has moved to Chapter 4 to better illuminate the
properties of bijections. The discussion of binomial coefficients is in Chap-
ter 5; in the first edition some of this was in Chapter 9. Chapter 5 also
has new material on permutations that further explores aspects of func-
tions. Because students have trouble producing combinatorial proofs, we
provide additional examples here in the Approaches section.

We reorganized Chapter 6 to start with divisibility and factoriza-
tion, allowing the Euclidean algorithm and diophantine equations to be
skipped. We also added an optional section on algebraic properties of (the
ring of) polynomials in one variable. In Chapter 7 we separated the discus-
sion of general equivalence relations from the discussion of congruence.
We reorganized Chapter 8 to remove the construction of Q, beginning
instead with geometric aspects of rational numbers. We moved the ma-
terial on probability to Chapter 9, which now focuses completely on this
topic. This clarifies the treatment of conditional probability and random
variables. We moved the optional section on generating functions from
Chapter 9 to Chapter 12, where it is applied.

In Part IV, we provided more details in proofs, plus friendlier lan-
guage and typesetting. The treatment of decimal expansions in 13 is
more natural and more precise. In Chapter 14, the material on Cauchy
Sequences now appears after the material on limits of sequences.

Pedagogy and Special Features

Certain pedagogical issues require careful attention. In order to ben-
efit from this course, students need a sense of intellectual progress. An
axiomatic development of the real numbers is painfully slow and frus-
trates students. They have learned algebraic computational techniques
throughout their schooling, and it is important to build on this foundation.
This dictates our starting point.




Preface for the Instructor xiii

In Chapter 1 we list the axioms for the real numbers and their el-
ementary algebraic consequences, and we accept them for computation
and reasoning. We defer the construction of the real numbers and veri-
fication of the field axioms to Appendix A, for later appreciation. In the
second edition, we have made this pedagogically valuable approach more
firmly consistent, obtaining N within R in Chapter 3 and moving the de-
tails of the rational number system from Chapter 8 to Appendix A. This
simplifies the treatment of induction and eliminates most comments (and
student uncertainty) about what we do and do not know at a given time.
We exclude the use of calculus until it is developed in Part IV.

The exercises are among the strongest features of this book. Many
are fun, some are routine, and some are difficult. Exercises designated by
“(—)” are intended to check understanding of basic concepts; they require
neither deep insight nor long solutions. The “(+)” problems are more dif-
ficult. Those designated by “(!)” are especially interesting or instructive.
Most exercises emphasize thinking and writing rather than computation.
The understanding and communication of mathematics through problem-
solving should be the driving force of the course.

We have reorganized the exercises and added many, especially of the
“(=)” type. We increased the number of exercises by 60% in Parts I-1I and
40% overall; there are now well over 900 exercises. We have gathered the
routine exercises at the beginning of the exercise sections. Usually a line
of dots separates these from the other exercises to assist the instructor
in selecting problems; after the dots the exercises are ordered roughly in
parallel to the presentation of material in the text. Many of the exercise
sets also have true/false questions, where students are asked to decide
whether an assertion is true or false and then to provide a proof or a
counterexample.

The purpose of the exercises is to encourage learning, not to frustrate
students. Many of the exercises in the text carry hints; these represent
what we feel will be helpful to most students. Appendix B contains more
elementary hints for many problems; these are intended to give students
a starting point for clearer thinking if they are completely stumped by a
problem. We have expanded Appendix B so that now we give hints for
more than half of the problems in the book.

We have also added sections called “How to Approach Problems” in
Chapters 1-5 and 13-14. These are the chapters emphasized in courses
with beginning students. In these sections, we summarize some thoughts
from the chapters and provide advice to help students avoid typical pit-
falls when starting to solve problems. The discussion here is informal.

The Preface to the Student lists many engaging problems. Some
of these begin chapters as motivating “Problems”; others are left to the
exercises. Solutions of such problems in the text are designated as “So-
lutions”. Items designated as “Examples” are generally easier than those
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designated as “Solutions” or “Applications”. “Examples” serve primarily
to illustrate concepts, whereas “Solutions” or “Applications” employ the
concepts being developed and involve additional reasoning.

Students have some difficulty recognizing what material is impor-
tant. The book has two streams of material: the theoretical mathematical
development and its illustrations or applications. “Definitions”, “Propo-
sitions”, “Lemmas”, “Theorems”, and “Corollaries” are set in an indented
style. Students may use these results to solve problems and may want to
learn them. Other items generally provide examples or commentary.

This book does not assume calculus and hence in principle can be
used in a course taught to freshmen or to high school students. It does re-
quire motivation and commitment from the students, since problems can
no longer be solved by mimicking memorized computations. The book is
appropriate for students who have studied standard calculus and wonder
why the computations work. It is ideal for beginning majors in mathe-
matics and computer science. Readers outside mathematics who enjoy
careful thinking and are curious about mathematics will also profit by
it. High school teachers of mathematics may appreciate the interaction
between problem-solving and theory.

The second author maintains a web site for this book with course
materials, listing of errors or updates, etc. Please visit

http://www.math.uiuc.eduw/~west/mt

Comments and corrections are welcome at west@math.uiuc.edu.

Design of Courses

We developed this book through numerous courses, beginning with
a version we team-taught in 1991 at the University of Illinois. Various
one-semester courses can be constructed from this material. The changes
made for the second edition facilitate the design of courses.

Many schools have a one-semester “transition” course that introduces
students to the notions of proof. Such a course should begin with Chapters
1-4 (omitting the Schroeder-Bernstein Theorem). Depending on the lo-
cal curriculum and the students, good ways to complete such a course are
with Chapters 5-8 or Chapters 13—14 (or both). The second edition makes
these chapters more independent and places the more elementary mate-
rial in each chapter near the beginning. This makes it easy to present
just the fundamental material in each chapter. With good students, it is
possible to present Chapters 1-10 and 13-15 in one semester, omitting
the optional material.

A one-semester course on discrete mathematics that emphasizes
proofs can cover Parts I-III, omitting most of Chapter 8 (rational num-
bers) and the more algebraic material from Chapters 6 and 7. Depending
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on the preparation of the students, Chapters 1-2 can be treated as back-
ground reading for a faster start. It should be noted that Part Il maintains
a more elementary atmosphere than Part III, and that the topics in Part
III are more specialized.

A one-semester course in elementary analysis covers Chapters 3 and
4, perhaps some of Chapter 8 (many such courses discuss the rational
numbers), and Chapters 13-17. Students should read Chapters 1 and
2 for background. This yields a thorough course in introductory analy-
sis. The first author has twice taught successful elementary real analysis
courses along these lines, covering chapters 13—17 completely after spend-
ing a few weeks on these earlier chapters.

The full text is suitable for a patient and thorough one-year course
culminating in the Fundamental Theorem of Algebra.
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Preface for the Student

This book demands careful thinking; we hope that it also is enjoyable.
We present interesting problems and develop the basic undergraduate
mathematics needed to solve them. Below we list 37 such problems. We
solve most of these in this book, while at the same time developing enough
theory to prepare for upperclass math courses.

In Chapters 1-5 and 13-14 we have included sections called “How
to Approach Problems”. These provide advice on what to do in solving
problems and warnings on what not to do. The “Approaches” evolved
from using the book in the classroom; we have learned what difficul-
ties students encountered and what errors occurred repeatedly. We have
also provided, in Appendix B, hints to many exercises. These hints are in-
tended to get students started in the right direction when they don’t know
how to approach a problem.

Many exercises are designated by “(-)”, “(1)”, or “(+)”. The “(-)” ex-
ercises are intended to check understanding; a student who cannot do
these is missing the basics. A student who can do an occasional “(+)”
problem is showing some ability. The “(!)” problems are particularly in-
structive, important, or interesting; their difficulty varies. Many chapters
contain true/false questions; here the student is asked to decide whether
something is true and provide a proof or a counterexample.

This is a mathematics book that emphasizes writing and language
skills. We do not ask that you memorize formulas, but rather that you
learn to express yourself clearly and accurately. You will learn to solve
mathematical puzzles as well as to write proofs of theorems from elemen-
tary algebra, discrete mathematics, and calculus. This will broaden your
knowledge and improve the clarity of your thinking.

A proof is nothing but a complete explanation of why something is
true. We will develop many techniques of proof. It may not be obvious
what technique works in a given problem; we will sometimes give differ-
ent proofs for a single result. Most students have difficulty when first
asked to write proofs; they are unaccustomed to using language carefully

xvi
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and logically. Do not be discouraged; experience increases understanding
and makes it easier to find proofs.

How can you improve your writing? Good writing requires practice.
Writing out a proof can reveal hidden subtleties or cases that have been
overlooked. It can also expose irrelevant thoughts. Producing a well-
written solution often involves repeated revision. You must say what you
mean and mean what you say. Mathematics encourages habits of writing
precisely, because clear decisions can be made about whether sentences
contain faulty reasoning. You will learn how to combine well chosen
notation with clear explanation in sentences. This will enable you to
communicate ideas concisely and accurately.

We invite you to consider some intriguing problems. We solve most
of these in the text, and others appear as exercises.

1. Given several piles of pennies, we create a new collection by remov-
ing one coin from each old pile to make one new pile. Each original pile
shrinks by one; 1, 1, 2, 5 becomes 1, 4, 4, for example. Which lists of sizes
(order is unimportant) are unchanged under this operation?

2. Which natural numbers are sums of consecutive smaller natural num-
bers? For example, 30 = 9+ 10+ 11 and 31 = 15 + 16, but 32 has no such
representation.

3. Including squares of sizes one-by-one through eight-by-eight, an ordi-
nary eight-by-eight checkerboard has 204 squares. How many squares of
all sizes arise using an n-by-n checkerboard? How many triangles of all
sizes arise using a triangular grid with sides of length n?

AN AN
INONININININ/N
\NAANNNNN/

4. At a party with five married couples, no person shakes hands with his
or her spouse. Of the nine people other than the host, no two shake hands
with the same number of people. With how many people does the hostess
shake hands?

5. We can tell whether two groups of weights have the same total weight
by placing them on a balance scale. How many known weights are needed
to balance each integer weight from 1 to 121? How should these weights
be chosen? (Known weights can be placed on either side or omitted.)

6. Given a positive integer k, how can we obtain a formula for the sum
42 ..+ nk?
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7. Is it possible to fill the large region below with non-overlapping copies
of the small L-shape? Rotations and translations are allowed.

n

2n
ZE "
1

2 2n

8. If each resident of New York City has 100 coins in a jar, is it possible
that no two residents have the same number of coins of each type (pennies,
nickels, dimes, quarters, half-dollars)?

9. How can we find the greatest common divisor of two large numbers
without factoring them?

10. Why are there infinitely many prime numbers? Why are there arbi-
trarily long stretches of consecutive non-prime positive integers?

11. Consider a dart board having two regions, one worth a points and
the other worth b points, where a and b are positive integers having no
common factors greater than 1. What is the largest point total that cannot
be obtained by throwing darts at the board?

12. A math professor cashes a check for x dollars and y cents, but the
teller inadvertently pays y dollars and x cents. After the professor buys
a newspaper for k cents, the remaining money is twice as much as the
original value of the check. If k = 50, what was the value of the check? If
k = 75, why is this situation impossible?

13. Must there be a Friday the 13th in every year?

14. When two digits in the base 10 representation of an integer are in-
terchanged, the difference between the old number and the new number
is divisible by nine. Why?

15. A positive integer is palindromic if reversing the digits of its base
10 representation does not change the number. Why is every palindromic
integer with an even number of digits divisible by 11?

16. What are all the integer solutions to 42x + 63y = z? To x2 + y? = z2?

17. Given a prime number L, for which positive integers K can we express
the rational number K/L as the sum of the reciprocals of two positive
integers?

18. Are there more rational numbers than integers? Are there more real
numbers than rational numbers? What does “more” mean for these sets?
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19. Can player A have a higher batting average than B in day games and
in night games but a lower batting average than B over all games?

Player | Day Night Overall
A 333 .250 .286
B .300 .200 .290

20. Suppose A and B gamble as follows: On each play, each player shows
1or 2 fingers, and one pays the other x dollars, where x is the total number
of fingers showing. If x is odd, then A pays B; if x is even, then B pays A.
Who has the advantage?

21. Suppose candidates A and B in an election receive a and b votes,
respectively. If the votes are counted in a random order, what is the
probability that candidate A never trails?

22. Can the numbers 0, ..., 100 be written in some order so that no 11
positions contain numbers that successively increase or successively de-
crease? (An increasing or decreasing set need not occupy consecutive
positions or use consecutive numbers.)

23. Suppose each dot in an n by n grid of dots is colored black or white.
How large must n be to guarantee the existence of a rectangle whose
corners have the same color?

24. How many positive integers less than 1,000,000 have no common
factors (greater than 1) with 1,000,000?

25. Suppose n students take an exam, and the exam papers are handed
back at random for peer grading. What is the probability that no student
gets his or her own paper back? What happens to this probability as »n
goes to infinity?

26. There are n girls and n boys at a party, and each girl likes some of the
boys. Under what conditions is it possible to pair the girls with boys so
that each girl is paired with a boy that she likes?

27. A computer plotter must draw a figure on a page. What is the mini-
mum number of times the pen must be lifted while drawing the figure?

28. Consider n points on a circle. How many regions are created by draw-
ing all chords joining these points, assuming that no three chords have a
common intersection?
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29. A Platonic solid has congruent regular polygons as faces and has the
same number of faces meeting at each vertex. Why are the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron the only ones?

30. Suppose n spaces are available for parking along the side of a street.
We can fill the spaces using Rabbits, which take one space, and/or Cadil-
lacs, which take two spaces. In how many ways can we fill the spaces? In
other words, how many lists of 1’s and 2’s sum to n?

31. Repeatedly pushing the “x?” button on a calculator generates a se-
quence tending to 0 if the initial positive value is less than 1 and tending
to oo if it is greater than 1. What happens with other quadratic functions?

32. What numbers have more than one decimal representation?

33. Suppose that the points in a tennis game are independent and that
the server wins each point with probability p. What is the probability
that the server wins the game?

34. How is lim,_, o, (1 + x/n)" relevant to compound interest?

35. One baseball player hits singles with probability p and otherwise
strikes out. Another hits home runs with probability p/4 and otherwise
strikes out. Assume that a single advances each runner by two bases.
Compare a team composed of such home-run hitters with a team com-
posed of such singles hitters. Which generates more runs per inning?

36. Let T1, Ty, ... be a sequence of triangles in the plane. If the sequence
of triangles converges to a region T, can we then conclude that Area(T) =
lim,_, ,, Area(T,,)?

37. Two jewel thieves steal a circular necklace with 2m gold beads and
2n silver beads arranged in some unknown order. Is it always true that
there is a way to cut the necklace along some diameter so that each thief
gets half the beads of each color? Does a heated circular wire always
contains two diametrically opposite points where the temperature is the
same? How are these questions related?
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Chapter 1

Numbers, Sets, and Functions

The ancient Babylonians considered the problem of finding two num-
bers when given their sum and product. They expressed the solution in
words, not in formulas. We begin this book by deriving the quadratic
formula and using it to solve this ancient problem. We then discuss the
properties of the real numbers and the basic concepts of sets and functions
that enable us to state and solve mathematical problems.

THE QUADRATIC FORMULA

Given two numbers s and p, the Babylonians wanted to find x and y
suchthat x +y = s and xy = p. To do so, we write y = s —x and substitute
to obtain x(s — x) = p, which we rewrite as x2 —sx + p = 0. Every solution
x to the problem of the Babylonians must satisfy this quadratic equation.

Solving this equation is equivalent to solving the general quadratic
equation. We don’t change the solutions if we multiply the equation by a
nonzero constant a to obtain ax? — asx + ap = 0, and then we can name
b = —as and ¢ = ap to obtain ax? + bx + ¢ = 0.

The familiar quadratic formula expresses the solution for x in
terms of a, b, and c. First we rewrite the equation in a manner where the
unknown value x appears only once:

2 b2
@
b2

(x + b)2+
=a — c— —.
T o 4a

b b
0=a(x2+;x)+c=a(x2+;x+ +c

Hence (x + £)2 = 245 Solving for x yields the quadratic formula:
%

402
_—b+ v/b?2 — 4ac
- 2a

2
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This formula describes all the solutions to the general quadratic equation.
When b? — 4ac > 0, it yields two values. When b? — 4ac = 0, these val-
ues are equal. When b2 — 4ac < 0, there is no solution in real numbers.
Rewriting the solution formula in terms of s and p yields the expressions

s++s2—4p s—/s2—-4p %)
2 ' 2

to solve the Babylonian problem. When s? — 4p < 0, there is no solution.

The quadratic formula gave us (x) as the solutions to the quadratic
equation x2 — sx + p = 0, when 52 — 4p > 0. Note that the sum of the
numbers in (%) is s and their product is p. This checks our solution.

For any real numbers o and 8, we can create a quadratic polyno-
mial that is zero at « and B by letting x — « and x — 8 be factors. Since
(x —a)(x — B) = x2 — (@ + B)x + af, the product of the solutions is the
constant term, and their sum is the negative of the coefficient of x.

What properties of numbers did we use in solving the Babylonian
problem? First, we used basic rules about addition and multiplication.
The result of adding several numbers does not depend on the order of
writing them or on the order of performing pairwise additions. Multipli-
cation has the same property. We also used the more subtle distributive
law: x(y +2) = xy + xz.

We also used properties of subtraction and division. Every number
u has an additive inverse —u, and subtracting « has the same effect as
adding —u«. Their sum is 0, and adding 0 causes no change. Similarly,
every nonzero number 4 has a multiplicative inverse «~!. Their product
is 1, and multiplying by 1 causes no change. An important distinction is
that we cannot divide by 0. The properties of inverses allow us to cancel
equal terms or nonzero common factors from both sides of an equality.

These rules about arithmetic are algebraic properties. We also used
properties of inequality and order. Because the product of two nonzero
numbers with the same sign is positive, square roots exist only for non-
negative numbers. Furthermore, if #2 = v, then also (—«)?2 = v. Thus
we write + on the square root sign in the quadratic formula and say that
there is no solution in real numbers when b2 — 4ac < 0.

The Babylonians would not have accepted our solution, because their
number system did not include negative numbers! In the real number
system, the formula (—b + v/b2 — 4ac)/(2a) makes sense when b? — 4ac >
0. It remains to express the square root of »> — 4ac in an acceptable form.
Expressing square roots in decimal form generally requires infinite non-
repeating decimal expansions. This requires a completeness property of
the number system and is related to infinite processes and limits.
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In developing mathematical ideas in this book, we take the real num-
ber system with its elementary properties as given; this allows us to focus
on the logical structure of mathematical arguments. At the end of this
chapter, we list the properties that characterize the real numbers, de-
scribe what we assume about them, and discuss ways to approach solving
problems. Meanwhile, we discuss other background material.

ELEMENTARY INEQUALITIES

Manipulating inequalities requires care. Multiplying both sides of
an equation by the same number preserves equality, but this fails for
inequalities. If a < b, then ac < bc if and only if ¢ > 0.

In this section, we derive several inequalities about real numbers.
They rely on two properties: positive real numbers have positive square
roots, and the square of every real number is nonnegative. We prove first
that taking squares or square roots of positive numbers preserves order.

1.1. Proposition. If0 < a < b, then a? < ab < b? and 0 < \/a < +/b.

Proof: Multiplying an inequality by a positive number does not change
whether the inequality is true. Thus we multiply a < b by a to obtain
a? < ab, and we multiply a < b by b to obtain ab < b

We also must have \/a < +/b; otherwise, applying the first statement
to /b < /a yields b < a, which violates the hypothesis a < b. [

We use bold type in this book for terms being defined.

1.2. Definition. The absolute value of a real number x, written as |x|,
is defined by

. ifx >0,
T |—x ifx<0O.

We think of |x| as the distance from x to 0; this motivates our next
proof (see Example 1.50 for another approach). Note that always x < |x|
and |xy| = |x]||y|.

1.3. Proposition. (Triangle Inequality) If x and y are real numbers,
then |x + y| < Ix| + |yl.
Proof: We start with the inequality 2xy < 2|x||y]. By adding x2 + y? to
both sides and using z2 = |z|2, we obtain
x2+2xy +y2 < x2+20x |yl +y% = xIP + 21x] Iyl + Iy 2.

By Proposition 1.1, we may take the positive square root of both sides and
preserve the inequality. Thus |x + y| < |x| + |y, as desired. [ ]
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In order to prove a statement, we derive it from known facts. Before
we find a proof, we may not know which known facts to use. To discover a
proof, it may be helpful to ask what is needed to make the conclusion true.
In this approach, we try to “reduce” the desired conclusion to a statement
known to be true. The written proof must be a rigorous justification of the
conclusion from known facts.

The next proposition illustrates this. Manipulating the desired in-
equality leads to a known inequality, but the proof starts with the known
inequality and derives the desired one from it. The arithmetic mean (or
“average”) of x and y is (x + y)/2. The geometric mean of nonnegative
numbers x and y is ,/xy. The term AGM Inequality stands for Arithmetic
Mean-Geometric Mean Inequality; it states that the arithmetic mean of
two nonnegative numbers is always at least their geometric mean.

1.4. Proposition. (AGM Inequality) If x and y are real numbers, then
2xy < x2 + y? and xy < (£}2)2. If x and y are also nonnegative, then
JXy < (x + y)/2. Equality holds in each only when x = y.

Proof: We begin with 0 < (x — y)2 = x2 — 2xy + y? and observe that
equality holds only when x = y. Adding 2xy yields 2xy < x2 + y2. Adding
another 2xy yields 4xy < x2 + 2xy + y2 = (x + y)2, which we divide by 4
to obtain xy < (%1)2.

If x > 0 and y > 0, then also xy > 0, and we can take positive square

roots in xy < (%1)2. Proposition 1.1 yields ,/xy < (x + y)/2. ]
1.5. Corollary. If x, y > 0, then f% < J*y < 2. Equality holds in each

inequality only when x = y.
Proof: Proposition 1.4 yields ./xy < %X We obtain the other inequality

from this by multiplying both sides by the positive number %’? ]

1.6. Application. The expression 72% is the harmonic mean of x and
y. It arises in the study of average rates. When we travel a distance d at
rate r in time ¢, we have d = rt, in appropriate units.

If we travel a distance 4 at a rate r; in time ¢, and make the return
trip at rate ry in time to, then r1#; = d = rots. What is the average rate r
for the full trip? The computation is 2d = r(#; + t2), and hence

2d 2d 2’1’2

r = = = .
htt f—1+% ri+re

Thus the average rate for the full trip is the harmonic mean of the rates
in the two directions. By Corollary 1.5, the rate for the full trip is less
than the average of the two rates one-way when those rates differ.

For example, if the rate one way on a plane trip is 380 mph, and the
return rate over the same distance is 420 mph, then the average rate is
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380 0 800(19
A3BNA20) — S0ARAD — (20 — 1)(20 + 1) = 399 mph

This is less than 400 because more time is spent at the slower rate. ]

In this book, we reserve the label Example for direct illustrations
of mathematical concepts. We use Solution and Application to desig-
nate examples that incorporate additional reasoning. Results that can be
used to solve problems here and elsewhere have the labels Definition,
Proposition, Lemma, Theorem, and Corollary.

SETS

We begin our formal development with basic notions of set theory.
Our most primitive notion is that of a set. This notion is so fundamental
that we do not attempt to give a precise definition. We think of a set as
a collection of distinct objects with a precise description that provides a
way of deciding (in principle) whether a given object is in it.

1.7. Definition. The objects in a set are its elements or members.
When x is an element of A, we write x € A and say “x belongs to A”.
When x is not in A, we write x ¢ A. If every element of A belongs to B,
then A is a subset of B, and B contains A; wewrite A C Bor B D A.

When we list the elements of a set explicitly, we put braces around
the list; “A = {—1, 1}” specifies the set A consisting of the elements —1
and 1. Writing the elements in a different order does not change a set.
We write x, y € § to mean that both x and y are elements of S.

1.8. Example. By convention, we use the special characters N, Z, Q, R to
name the sets of natural numbers, integers, rational numbers, and
real numbers, respectively. Each set in this list is contained in the next,
sowewrite NCZ C Q CR.

We take these sets as familiar, We use the convention that 0 is
not a natural number; N = {1,2,3,...}. The set of integers is Z =
{...,—2,-1,0,1,2,...}. The set Q of rational numbers is the set of real
numbers that can be written as § witha,b € Z and b # 0. [ |

1.9. Definition. Sets A and B are equal, written A = B, if they have the
same elements. The empty set, written @, is the unique set with no
elements. A proper subset of a set A is a subset of A that is not A
itself. The power set of a set A is the set of all subsets of A.

Note that the empty set is a subset of every set.
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1.10. Example. Let S be the set {Kansas, Kentucky}. Let T be the set of
states in the United States whose names begin with “K”. The sets S and
T are equal. The set S has four subsets: @, {Kansas}, {Kentucky}, and
{Kansas, Kentucky}. These four are the elements of the power set of S. B

1.11. Remark. Specifying a set. In Example 1.10, we specified a set both
by listing its elements and by describing it as a subset of a larger set. In
order to specify a set S consisting of the elements in a set A that satisfy a
given condition, we write “{x € A : condition(x)}”. We read this as “the set
of x in A such that x satisfies ‘condition’ ”. For example, the expression § =
{x € R: ax? + bx + c = 0} specifies S as the set of real numbers satisfying
the equation ax? 4 bx + ¢ = 0, where a, b, c are known constants. We may
omit specifying the universe A when the context makes it clear. ]

1.12. Remark. What must be done to determine the solutions to a mathe-
matical problem? In order to prove that the set of solutions is 7', we must
prove that every solution belongs to T, and we must prove that every
member of T is a solution.

Letting S denote the set of solutions, our goal is to prove that § =
T, where T is a list or has a simple description. The statement “S =
T” conveys two pieces of information: “S C T and T C S”. The first
containment states that every solution belongs to 7, and the second states
that every member of T is a solution. [ ]

1.13. Example. Equality of sets.

1) The inequality x> < x. Let S = {x e R: x2 < x}, andlet T = {x €
R: 0 < x < 1}. We claim that § = T. To prove this, we show that T C §
and that § € T. First consider x € T. Since x > 0, we can multiply
the known inequality x < 1 by x to obtain x2 < x, so x € S. Conversely,
consider x € S. Since x2 < x, we have 0 > x? —x = x(x —1). This requires
that x and x — 1 are nonzero and have opposite signs, which yields x € T.

2) The quadratic equation ax® + bx + ¢ = 0. Let S be the set of so-
—b+¢b2—4ae —b— ¢b2—4ac}

lutions, and let T = { When we proved S = T,

we could have proved both § C T and T C §. The latter involves plug-
ging each purported solution into the original equation and checking that
it works. Qur reasoning was more efficient; we operated on the equa-
tion in ways that preserved the set of solutions. This produced a string of
equalities of sets, starting with S and ending with 7. Note that plugging
the members of T into the equation enables us to check that we have not
made an error in manipulating the equation. [ ]

Our next example again illustrates the process of describing a solu-
tion set by proving two containments. We are proving that an object is a
solution if and only if it belongs to the desired set.
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1.14. Application. The Penny Problem. Given piles of pennies, we re-
move one coin from each pile to make one new pile. Each original pile
shrinks by one, so each pile of size one disappears: 1,1,2,5 becomes 1,4,4,
for example. We consider different orderings of the same list of sizes to
be equivalent, so we restrict our attention to lists of positive integers in
nondecreasing order. Let S be the set of lists that do not change.

T e o™

Let a be a list with n piles, and let b be the resulting new list. If
a € S, meaning that a and b are the same, then b also has n piles. Since
we introduce one new pile, exactly one pile must disappear. Thus a has
exactly one pile of size 1. Thus b also has exactly one pile of size 1. This
forces a to have exactly one pile of size 2.

We continue this reasoning for i from 1 to » — 1. From a having one
pile of size i, we conclude that b has one pile of size i, and therefore that
a has one pile of size i + 1. This gives us one pile of each size 1 through ».

Let T be the set of lists consisting of one pile of each size from 1
through some natural number n. We have shown that every unchanged
configuration has this form, so § € T. To complete the solution, we also
check that all elements of T remain unchanged.

Consider the element of T with piles of sizes 1,2,...,n. For each i
from 2 to n, the pile of size i becomes a pile of size i — 1. The pile of size
1 disappears, and the n piles each contribute one coin to form a new pile
of size n. The result is the original list. Now we have provedthat S C T
and T C §,s0 S = T. We have described all the unchanged lists. ]

The next three definitions introduce notation and terminology for
special sets that we will use throughout this book.

1.15. Definition. Sets of integers. When a,b € Z with a < b, we use
{a,...,b)todenote {i € Z:a <i < b}. When n € N, we write [n] for
{1,...,n}. The set of even numbers is {2k : k € Z}. The set of odd
numbersis {2k +1: k € Z}.

Note that 0 is an even number. Every integer is even or odd, and no
integer is both. The parity of an integer states whether it is even or odd.
We say “even” and “odd” for numbers only when discussing integers. Sim-
ilarly, when we say that a number is positive without specify the number
system containing it, we mean that it is a positive real number. Thus,
“consider x > 0” means “let x be a positive real number”.
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1.16. Definition. Intervals. When a, b € R with a < b, the closed inter-
val [a, b] is the set {x € R: a < x < b}. The open interval (q, b) is
the set {x e R: a < x < b}.

Consider S C R. If an element x belonging to S is at least as large as
every element of S, then x is a maximum of S. A set can only have one
maximum. The concept of minimum is defined analogously. The open
interval (a, b) has no maximum and no minimum.

There are several natural ways to obtain new sets from old sets.

1.17. Definition. k-tuples and Cartesian product. A list with entries in
A consists of elements of A in a specified order, with repetition al-
lowed. A k-tuple is a list with k entries. We write A* for the set of
k-tuples with entries in A.

An ordered pair is a list with two entries. The Cartesian prod-
uct of sets S and T, written S x T, is the set {(x, y): x € S,y € T}.

Note that A2 = A x A and A* = {(x1, ..., x): x; € A}. We read “x;” as
“x sub i”. Since we use the notation (a, b) for ordered pairs, we often write
“the interval (a, b)” to avoid confusion when specifying an open interval.

When S = T = R, the Cartesian product S x T or R? can be viewed
as the set of all points in the plane, designated by horizontal and vertical
coordinates, called the Cartesian coordinates of the point. The con-
cept of Cartesian product is named for René Descartes (1596—1650). The
Cartesian product of two intervals in R is a rectangle in the plane.

1.18. Definition. Set operations. Let A and B be sets. Their union, writ-
ten A U B, consists of all elements in A or in B. Their intersection,
written A N B, consists of all elements in both A and B. Their dif-
ference, written A — B, consists of the elements of A that are not in
B. Two sets are disjoint if their intersection is the empty set @. If
a set A is contained in some universe U under discussion, then the
complement A€ of A is the set of elements of U rot in A.

1.19. Example. Let E and O denote the sets of even numbers and odd
numbers. Wehave ENO =@ and EUQO = Z. WithinZ, wehave E‘ = 0. 1

Pictures give life to mathematical concepts and illuminate essential
ideas. We encourage the reader to draw pictures to clarify concepts. We
do this for the operations in Definition 1.18. Diagrams illustrating sets
and their relationships are named for John Venn (1834-1923), though he
was not the first person to use them.

1.20. Remark. Venn diagrams. In a Venn diagram, an outer box rep-
resents the universe under consideration, and regions within the box cor-
respond to sets. Non-overlapping regions correspond to disjoint sets. The
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four regions in the Venn diagram for two sets A and B represent A N B,
(AUB),A—B,and B — A.

Since A — B consists of the elements in A and not in B, we have
A — B = AN B¢, Similarly, the diagram suggests that B¢ is the union of
A — B and (A U B)¢, which are disjoint. Also A — B and B — A are disjoint.

Slightly more subtle is (A -~ B)U(B—A) = (AUB)—(ANB). A
rigorous proof shows that an element belongs to one set if and only if it
belongs to the other. Exercise 41 lists other elementary relationships. &

(AU B)‘

FUNCTIONS

“Function” is the name we use for a mathematical machine with in-
puts and outputs. The inputs are the elements from one set; the outputs
are elements of a (possibly) different set. Familiar ways to specify a func-
tion include an algebraic formula, a list of the outputs associated with the
inputs, a description in words of how an input determines its output, and
various graphical representations.

1.21. Definition. A function f from a set A to a set B assigns to each
a € A a single element f(a) in B, called the image of ¢ under f. For
a function f from A to B (written f: A — B), the set A is the domain
and the set B is the target. The image of a function f with domain
Ais {f(a): a € A}.

1.22. Remark. Schematic representation. A function f: A — B is de-
fined on A and maps A into B. To visualize a function f: A — B, we
draw a region representing A and a region representing B, and from each
x € A we draw an arrow to f(x) in B.

The image of a function is contained in its target. Thus we draw the

region for the image inside the region for the target. |
R - —
domain o image target

[\

A f B
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There are many ways to describe a function; for each a € A, we must
specify f(a). We can list the pairs (a, f(a)), provide a formula for comput-
ing f(a) from a, or describe the rule for obtaining f(a) from a in words.
Note that f(a) denotes an element of the target of f and does not de-
note the function f. Thus x2 is a number (when we know x); it should be
distinguished from the function f: R — R defined by f(x) = x2.

1.23. Example. Descriptions of functions.

Functions given by formulas. The “squaring” function S: R — R is
defined by S(x) = x . x = x2. The “addition” and “multiplication” functions
are defined from R x R to R by A(x, y) = x + y and M(x, y) = xy.

A function given by listing its values. Define g: [7] — N by listing

A function given by words. Define h: [7] — N by letting #(n) be the
number of letters in the English word for the nth day of the week, starting
with Sunday. The function # is the same as g defined above. [ ]

1.24. Remark. The meaning of “well-defined”. A function f: A — B may
be specified by different rules on different subsets of A. The statement “ f
is well-defined” means that the rules assign to each element of A exactly
one element, belonging to B. When different rules apply to an element of
A, we must check that they give the same element of B (see Exercise 45).

For example, the absolute value of x (Definition 1.2) is defined using
two rules, both applying when x = 0. Since 0 = —0, the rules agree at 0,
and thus absolute value is well-defined. |

1.25. Definition. A function f is real-valued if its image is a subset of R;
in this case f(x)is a number. For real-valued functions f and g with
domain A, the sum f + g and product fg are real-valued functions
on A defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

1.26. Definition. A (real) polynomial in one variable is a function
f:R — R defined by f(x) = co + c1x! + ... + cxx*, where k is a
nonnegative integer and cy, ..., c; are real numbers called the coef-
ficients of f. The degree of f is the largest d such that c¢; # 0; the
polynomial with all coefficients 0 has no degree. Polynomials of de-
grees 0,1,2,3, are constant, linear, quadratic, cubic, respectively.

We can study polynomials in more variables. A monomial in vari-
ables x,, ..., x, is an expression cx;' - - - xi», where c is a real number and
each g; is a nonnegative integer. A polynomial in n variables is a finite
sum of monomials in »n variables. For example, the function f defined by

fx,y,2) =x24+y2+ 224+ 2xy + 2xz + 2yz




12 Chapter 1: Numbers, Sets, and Functions

is a polynomial in three variables. It is a polynomial in the single variable
x when y and z are held constant.
We can also describe functions using geometric ideas.

1.27. Definition. The graph of a function f: A — B is the subset of
A x B consisting of the ordered pairs {(x, f(x)): x € A}.

1.28. Remark. Pictures of graphs. Let f be a real-valued function defined
on aset A C R. We draw two copies of R as horizontal and vertical axes,
associating the horizontal axis with the domain. The graph of f is then a
set of points in the plane. A set S of points in the plane is the graph of a
function if and only if it contains at most one element (x, y) for each real
number x; in other words, each vertical line intersects S at most once. &

1.29. Example. Alternative representations. We describe a particular
function f: [4] — [4] using each method we have discussed. Define f by
f(n) =5 — n to give a formula. Define f by f(1) =4, f(2) =3, f(3) =2,
f(4) = 1, tisting values. Define f by saying that f interchanges 1 and 4
and interchanges 2 and 3. The graph of f is {(1,4), (2,3),(3.2),(4,1)}. &

For a function defined by a formula, the image may not be obvious.

1.30. Example. For the function f: R — R defined by f(x) = x/(1 + x2),
the image is the interval [-1/2,1/2]. To prove that this is the image,
we show first that |f(x)| < 1/2 for x € R. This claim is equivalent to
lx| < (1 + x2)/2, which follows from (1 — [x])2 > 0.

We have proved that the interval contains the image; we must also
prove that the image contains the interval. For y € [-1/2, 1/2], we prove
that there exists x € R such that f(x) = y. Note that f(0) = 0. For
y#0and y € [-1/2,1/2], we set y = x/(1 + x2) and solve for x in terms
of y. Applying the quadratic formula to yx2 —x + y = O yields x = (1 £
v1—4y2)/2y. Since |y| < 1/2, we now have x € R such that f(x)=y. &

1.31. Definition. A set S C R is bounded if there exists M € R such
that |x| < M for all x € S. A set is unbounded if no such M ex-
ists. A bounded function is a real-valued function whose image is
bounded; that is, a real-valued function f for which there is some M
in R such that | f(x| < M for all x in the domain.
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1.82. Definition. Let f: R — R, and let A be a set of real numbers. We
say that f is increasing (on A) if f(x) < f(x’) whenever x < x’
and x, x’ € A. It is nondecreasing (on A) if f(x) < f(x') whenever
x < x"and x, x’ € A. Changing < to > and < to > yields definitions
for decreasing and nonincreasing. A function is monotone on A
if it is nondecreasing on A or if it is nonincreasing on A.

The properties “increasing” and “nondecreasing” are also called
strictly increasing and weakly increasing, respectively. Similarly,
a function is strictly monotone on A if it is increasing on A or if it is
decreasing on A. We use the word “monotone” to avoid repetition; many
results apply in both cases. A function that is increasing on one interval
and decreasing on another is not monotone. The function of Example 1.30
is bounded but not monotone.

unbounded, bounded, _bounded,
increasing not monotone increasing

1.33. Remark. Geometric interpretations. A function from R to R is in-
creasing if and only if for every horizontal line intersecting its graph, the
graph is above that line to the right of the intersection and below it to the
left. The function is bounded if and only if every point in the graph lies in
the band between some pair of horizontal lines. ]

The use of “if” in Definitions 1.31-1.32 has the same meaning as the
use of “if and only if” in Remark 1.33. In defining X, we often say that X
occurs “if” some property holds, yet we mean that the new concept and the
condition are equivalent. This is a convention; in some sense the concept
does not exist until it is defined, so the implication can only hold in one
direction. In this book, the definition usage of “if” is recognizable by the
use of bold type for the concept being defined.

1.34. Definition. The identity function on a set § is the function f: § —
S defined by f(x) = x for all x € S. A fixed point of a function
f: S — Sis an element x € § such that f(x) = x.

Every element of S is a fixed point for the identity function on S. In
the Penny Problem (Application 1.14), we studied a function from the set
of nondecreasing lists of natural numbers to itself; our aim was to find all
fixed points. A function f from R to R has a fixed point if and only if the
line {(x, x)} through the origin intersects the graph of f.
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The identity functions on N, Z, and R are graphed below. The graphs
show that these are different functions; a function cannot be specified by
a formula alone. Two functions are equal if they have the same domain,
have the same target, and agree in value at each element of the domain.

INVERSE IMAGE AND LEVEL SETS

We can interpret solution sets for equations using the language of
functions. For any function f and value y in its target, we consider the
set of solutions to f(x) = y.

1.35. Definition. Given f: A — B and y € B, the inverse image of y
under f, written If(y), is the set {x € A: f(x) = y}.

If f(p) is the temperature at the point p, then 7;(32) is the set of
all points where the temperature is 32. The inverse image is called an
tsotherm; sketches of isotherms appear on most weather maps.

The inverse image of y under a function f: A — B is a subset of the
domain A. Generally speaking, inverse image is not a function from B to
A, because it may associate many elements of A with an element of B.

Real-valued functions often arise as measurements. Consider for ex-
ample the function A4 that assigns to a point in the United States the
height of this point above sea level. A topographical map shows points
with the same height above sea level connected by a level curve (the curve
may have many pieces). Each level curve for 4 is I,(c) for some c; the
number c¢ gives the height above sea level.

1.36. Definition. For i: RxR — R, the level set of # with valuecis I, (c).

1.37. Example. Let A(x, y) = x + y. For each c, 1,(c) is a line in R2, The
level sets are parallel lines whose union is all of R2.
Let M(x, y) = xy. The level set I);(0) consists of the two coordinate
axes. For ¢ # 0, the level sets are hyperbolas; each has two branches.
Let D(x,y) = x2 4+ y2. The level set Ip(c) is empty when ¢ < 0,
consists of one point when ¢ = 0, and is a circle of radius ,/c when ¢ > 0.
The figure shows these level sets when ¢ € {-2, -1, 0, 1, 2}. [ |
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1.38. Application. Given two real numbers whose sum is between —8
and 8 and whose product is between —20 and 20, what is the largest that
one of these numbers can be?

We use level sets to solve this problem. We are given [x + y| < 8 and
|xy| < 20. In the graph of the solution set the boundary is determined by
the level sets x + y = 8, x + y = —8, xy = 20, and xy = —20. The level
sets for intermediate values lie between them.

By plotting the level sets, we see that the largest value x can have
(when both inequalities hold) occurs when xy = —20 and x + y = 8. Solv-
ing these equations as in the discussion of the Babylonian problem of
Chapter 1 yields x = 10 and y = —2. Thus the maximum valueis 10. =&

(—2,10)
(-10,2)
(10, —2)
(2, -10)
THE REAL NUMBER SYSTEM

The real numbers satisfy a short list of properties called axioms from
which all the other properties can be derived. In this section we state
these properties and some of their consequences. Our purpose here is not
to study these in detail, but rather to state our starting point and clarify
what the student may assume when solving exercises.

A structure satisfying Definitions 1.39-1.41 below is a complete or-
dered field. In Appendix A, we prove that all such structures are essen-
tially equivalent. Furthermore, we build such a structure and verify that
it satisfies the axioms. The construction begins with N (satisfying appro-
priate axioms) and successively builds Z, Q, and finally what we call R,
each time defining the new objects in terms of the previous objects.
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These constructions are somewhat formal and dull. In the text, we
instead begin with the real numbers and their properties and emphasize
techniques of reasoning. We assume that the real number system R exists
and satisfies the properties in Definitions 1.39-1.41. These imply all other
properties of real numbers, such as those in Propositions 1.43-1.46. For
now we treat N informally; in Chapter 3 we give a formal definition of N
as a subset of R. Whether we begin with N and define R as in Appendix
A, or begin with R as in the text, the same results hold. In each case, the
real number system satisfies Definitions 1.39-1.41.

1.39. Definition. Field Axioms. A set S with operations + and - and
distinguished elements 0 and 1 with 0 # 1 is a field if the following
properties hold for all x, y, z € S.

AO:x+yeS MO:x-yeS Closure
Al: x+y)+z =x+(y+2) ML:x-y)-z=x-(y-2) Associativity
A2: x+y=y+x M2:x-y=y-x Commutativity
A3: x+0=x M3:x-1=x Identity
A4: given x, thereisaweS M4: for x #0, thereisa weS Inverse

such that x + w =0 such thatx - w=1

DL: x-(y+2z)=x-y+x-z Distributive Law

The operations + and - are called addition and multiplication.
The elements 0 and 1 are the additive identity element and the
multiplicative identity element.

It follows from these axioms that the additive inverse and multiplica-
tive inverse (of a nonzero x) are unique. The additive inverse of x is the
negative of x, written as —x. To define subtraction of y from x, we let
x —y = x + (—y). The multiplicative inverse of x is the reciprocal of x,
written as x~!. The element 0 has no reciprocal. To define division of x
by y wheny # 0, we let x/y = x - (y!). We write x - y as xy and x - x as
x2. We use parentheses where helpful to clarify the order of operations.

1.40. Definition. Order Axioms. A positive set in a field F is a set
P C F such that forx,y € F,

Pl: x,y € Pimpliesx +y € P Closure under Addition
P2: x,y € P implies xy € P Closure under Multiplication
P3: x € F implies exactly one of = Trichotomy

x=0,xeP, —xeP

An ordered field is a field with a positive set P. In an ordered field,
we define x < y to mean y — x € P. The relations <, <, and > have
analogous definitions in terms of P.

Note that P = {x € F: x > 0}. Another phrasing of trichotomy is that
each ordered pair (x, y) satisfies exactlyoneof x < y, x =y, x > y.
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If S C F, then 8 € F is an upper bound for S ifx < g forall x € §.

1.41. Definition. Completeness Axiom. An ordered field F is complete
if every nonempty subset of F that has an upper bound in F has a
least upper bound in F.

Until Part IV, we do not need the Completeness Axiom for R, except
to be aware that it ensures the existence of square roots of positive real
numbers. The axioms in Definitions 1.39-1.40 imply that arithmetic has
its familiar properties. We list some of these below. We agree to assume
all these properties of numbers. Note that Q also is an ordered field, and
thus the properties listed below also hold for arithmetic in Q. The set Z
of integers satisfies all the field and order axioms except the existence of
multiplicative inverses.

1.42. Proposition. Arithmeticin N, Z, Q. Each of N, Z, Q is closed under
addition and multiplication, Z and Q are closed under subtraction,
and the set of nonzero numbers in Q is closed under division.

The next four propositions state properties of an ordered field F. All
statements apply for each choice of x, y, z, u,v € F.

1.43. Proposition. Elementary consequences of the field axioms.
a)x+z=y+zimpliesx =y e)(—x)(—y) =xy

b)x-0=0 Dxz=yzandz#O0implyx =y
¢) (—x)y = —(xy) g)xy =0impliesx =0ory =0
d) —x = (-1)x
1.44. Proposition. Properties of an ordered field.
Ol: x<x Reflexive Property
02: x<yandy <ximplyx =y Antisymmetric Property
O3: x<yandy<zimplyx <z Transitive Property

O4: atleast one of x < y and y < x holds Total Ordering Property

1.45. Proposition. More properties of an ordered field.

Fl: x <yimpliesx +z<y+z Additive Order Law

F2: x <yand 0 <z imply xz < yz Multiplicative Order Law
F3: x<yandu<vimplyx+u<y+v Addition of Inequalities

F4: 0 <x <yand 0 <u <vimply xu < yv Multiplication of Inequalities

1.46. Proposition. Still more properties of an ordered field.
a)x < yimplies —y < —x e)0<1
b)x <yand z <0imply yz <xz 0 < x implies 0 < x!
000<xand0<yimplyO<xy g 0<x<yimpliesO <y ! <x"
d) 0 < x?

1
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Properties (a) and (b) of Proposition 1.46 tell us that multiplying an
inequality by a negative number requires reversing the inequality.

There are other equivalent formulations of the axioms. Hence it is
not important to remember which are axioms and which are consequences
in our list; we take the entire list as our starting point.

HOW TO APPROACH PROBLEMS

In this chapter, we discussed mathematical objects; in Chapter 2,
we will discuss mathematical statements. As a warmup, the exercises
here begin with translations between mathematics and English. Most
problems in this chapter demand precise understanding of language but
require little calculation. Computations become just one part of a mathe-
matical tool box. We will develop more tools in later chapters.

We mention some simple strategies to help students get started on
unfamiliar problems. Although they seem self-evident, these strategies
will be helpful throughout the book; keep them in mind.

1) Understand the problem and approach it logically.

2) Substitutions allow us to simplify expressions or to introduce use-
ful new expressions.

3) When there are only a few possibilities, analysis by cases may help
eliminate all possibilities except the desired conclusion.

4) Check whether answers are reasonable.

Understanding problems.

Exercises 1-26 provide practice in translating words into mathemat-
ical concepts. One must also understand the definitions of mathematical
concepts used (see Exercise 18 and beyond).

To gain an understanding of a problem, one sometimes analyzes a
special case. For example, one could analyze the Penny Problem for small
values of n to discover a pattern and then extend the argument that works
for special values to prove the desired result in general.

Distinguish what is given or known from what is to be shown. Un-
derstand what is needed to obtain the desired conclusion from the known
information. Break a complicated problem into simpler steps.

Substitution.

As change for a dollar we might receive four quarters, or we might
exchange four quarters for a dollar. Mathematical equations also can be
read two ways. Substitution is the process of replacing a mathematical
expression by a more convenient expression with the same value. Substi-
tution has many facets; we substitute when we apply a general formula in
a special case, when we wish to simplify, or when we eliminate variables.
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1.47. Example. Since x2—y? = (x +y)(x — y) holds for all x and y, we may
replace one side of this equality by the other. For example, to multiply
598 by 602 mentally, think

(600 — 2)(600 + 2) = 6002 — 22 = 360000 — 4 = 359996.

Here it was convenient to replace (x + y)(x — y) with x2 — y2. On the other
hand, to find the roots to an equation we might replace x2 — y? with its
factored form (x + y)(x — y). [ |

Substitution can sometimes be used to eliminate an irrelevant vari-
able. In Application 1.6, we wrote r = 2d/(f; + 12), but we wanted to
express r in terms of r; and ro. We substituted expressions for ¢; and #; in
terms of the desired variables, and the dependence on d canceled out.

1.48. Example. In Exercise 31, the hint for part (a) suggests using the
inequality 2¢tu < 12 +u? from Proposition 1.4. In fact, we use six instances
of this inequality, substituting various quantities for t and u, to obtain the
inequality 4xyzw < x* + y* + z¢ + wt.

To obtain 3abc < a® + b% + ¢® from this, we again use substitution.
We want to reduce the expression from four variables to three variables
with symmetric roles; letting w = (xyz)/3 accomplishes this in a useful
way. After this, substituting a, b, ¢ for appropriate expressions in x, y, z
yields the desired identity.

The substitutions in the last step are natural, but finding the sub-
stitution w = (xyz)'/? is more difficult. Experience, intelligent guessing,
and trial and error all help decide what substitutions might be useful. B

Analysis by cases.

The form of an answer may depend on the values of the variables; the
cases in Exercise 37 arise in this way. Alternatively, deductions we want
to make might be valid only for restricted choices of the variables.

1.49. Example. We seek all integer solutions to a2b > 2a. In other words,
we seek an explicit description of the set {(a,b) € Z?: a’b > 2a}. We
rewrite the inequality as a(ab — 2) > 0. This inequality holds if and only
if both factors have the same sign. Thus we are led to the two cases below.
1)a>0andab > 2
2)a <0and ab < 2
The first case contains all integer pairs in the first quadrant except (1, 1),
(1, 2), and (2, 1). The second case contains all integer pairs in the second
quadrant and also (—1, —1) from the third quadrant. The answer is the
union of the sets of solutions in the two cases. |

1.50. Example. Analysis by cases may arise when studying the abso-
lute value function. For real numbers x, y, we can prove the Triangle
Inequality |x + y| < [x]| + |y| (Proposition 1.3) in this way.
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When x, y are both nonnegative, both sides equal x + y. When x, y
are both nonpositive, both sides equal —x — y. When x, y have opposite
signs, we may assume that x > 0 > y. The inequality then holds because

Ix +yl=max{x +y,—x —y} <x —y=|x| + |yl a

Finding a way to avoid analysis by cases can lead to deeper under-
standing of a problem or method. Many questions related to absolute
value and distance are best understood by studying squared distance.

The use of sets facilitates analysis by cases. The word “or” corre-
sponds to union of sets, and the word “and” corresponds to intersection.

Checking answers.

Checking answers can expose errors in reasoning. When finding a
general answer, one should check it in special cases. When a formula
describes areas or lengths (as in Exercise 19), the resulting values must
be nonnegative. We recommend checking answers for reasonableness;
how to do this depends on the problem.

EXERCISES

Words like “determine”, “show”, “obtain”, or “construct” include a request
for justification; these are very similar to “prove”. Answers to problems in this
book should be given full explanations. Explanations include sentences; reasoning
cannot be explained without words.

Easier problems are indicated by “(—)”, harder problems by “(+)”. Those
designated “(!)” are particularly interesting or instructive.

1.1. (—) We have many tables and many chairs. Let ¢ be the number of tables,
and let ¢ be the number of chairs. Write down an inequality that means “We have
at least four times as many chairs as tables.”

1.2. (—) Fill in the blanks. The equation x2 + bx + ¢ = 0 has exactly one solution
when , and it has no solutions when

1.3. (-) Given that x + y = 100, what is the maximum value of xy?

1.4. (—) Explain why the square has the largest area among all rectangles with
a given perimeter.

1.5. (—) Consider the Celsius (C) and Fahrenheit (F) temperature scales.

C| 0 5 10 15 20 25 30
F | 382 41 50 59 68 77 86

Express the sentence “The temperature was 10° C and increased by 20° C” using
the Fahrenheit scale.

1.6. (-) At a given moment, let f and ¢ be the values of the temperature on
the Fahrenheit and Celsius scales, respectively. These values are related by
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f = (9/5)c + 32. At what temperatures do the following events occur?
a) The Fahrenheit and Celsius values of the temperature are equal.
b) The Fahrenheit value is the negative of the Celsius value.
c¢) The Fahrenheit value is twice the Celsius value.

1.7. (—) The statement below is not always true for x, y € R. Give an example
where it is false, and add a hypothesis on y that makes it a true statement.
“If x and y are nonzero real numbers and x > y, then (-1/x) > (-1/y).”

1.8. (!) In the morning section of a calculus course, 2 of the 9 women and 2 of
the 10 men receive the grade of A. In the afternoon section, 6 of the 9 women
and 9 of the 14 men receive A. Verify that, in each section, a higher proportion of
women than of men receive A, but that, in the combined course, a lower proportion
of women than of men receive A. Explain! (See Exercises 9.19-9.20 for related
exercises and Example 9.20 for a real-world example.)

1.9. (-) If a stock declines 20% in one year and rises 23% in the next, is there a
net profit? What if it goes up 20% in the first year and down 18% in the next?

1.10. (-) On July 4, 1995, the New York Times reported that the nation’s uni-
versities were awarding 25% more Ph.D. degrees than the economy could absorb.
The headline concluded that there was a 1in 4 chance of underemployment. Here
“underemployment” means having no job or having a job not requiring the Ph.D.
degree. What should the correct statement of the odds have been?

1.11. (—) A store offers a 15% promotional discount for its grand opening. The
clerk believes that the law requires the discount to be applied first and then the
tax computed on the resulting amount. A customer argues that the discount
should be applied to the total after the 5% sales tax is added, expecting to save
more money that way. Does it matter? Explain.

1.12. (-) A store offers an “installment plan” option, with no interest to be paid.
There are 13 monthly payments, with the first being a “down payment” that is
half the size of the others, so payment is completed one year after purchase. If a
customer buys a $1000 stereo, what are the payments under this plan?

1.13. (—) Let A be the set of integers expressible as 2k — 1 for some k € Z. Let B
be the set of integers expressible as 2k + 1 for some k € Z. Prove that A = B.

1.14. (-) Let a, b, c,d be real numbers with a < b < ¢ < d. Express the set
[a, b] U [c, d] as the difference of two sets.

1.15. (—) For what conditions on sets A and B does A — B = B — A hold?

1.16. (—) Starting with a single pile of 5 pennies, determine what happens when
the operation of Application 1.14 is applied repeatedly. Determine what happens
when the initial configuration is a single pile of 6 pennies.

1.17. (—) What are the domain and the image of the absolute value function?
1.18. (—) Determine which real numbers exceed their reciprocals by exactly 1.

[ ] [ ] [ ] [ ] [ ]
1.19. What are the dimensions of a rectangular carpet with perimeter 48 feet and

area 108 square feet? Given positive numbers p and a, under what conditions
does there exist a rectangular carpet with perimeter p and area a?
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1.20. Suppose that r and s are distinct real solutions of the equation ax? 4 bx+¢c =
0. In terms of a, b, ¢, obtain formulas for » + s and rs.

1.21. Let a, b, ¢ be real numbers with a # 0. Find the flaw in the following “proof”
that —b/2a is a solution to ax? + bx + ¢ = 0.
Let x and y be solutions to the equation. Subtracting ay? + by + ¢ = 0 from
ax? 4 bx + ¢ = 0 yields a(x2 — y?) + b(x — y) = 0, which we rewrite as a(x +
¥)(x — y)+ b(x — y) = 0. Hence a(x + y)+ b = 0, and thus x + y = —b/a.
Since x and y can be any solutions, we can apply this computation letting y
have the same value as x. With y = x, we obtain 2x = —b/a, or x = —b/(2a).

1.22, We have two identical glasses. Glass 1 contains x ounces of wine; glass 2
contains x ounces of water (x > 1). We remove 1 ounce of wine from glass 1 and
add it to glass 2. The wine and water in glass 2 mix uniformly. We now remove 1
ounce of liquid from glass 2 and add it to glass 1. Prove that the amount of water
in glass 1 is now the same as the amount of wine in glass 2.

1.23. A digital 12-hour clock is defective: the reading for hours is always correct,
but the reading for minutes always equals the reading for hours. Determine the
minimum number of minutes between possible correct readings of the clock.

1.24. Three people register for a hotel room; the desk clerk charges them $30.
The manager returns and says this was an overcharge, instructing the clerk to
return $5. The clerk takes five $1 bills, but pockets $2 as a tip and returns only
$1 to each guest. Of the original $30 payment, each guest actually paid $9, and
$2 went to the attendant. What happened to the “missing” dollar?

1.25. A census taker interviews a woman in a house. “Who lives here?” he asks.
“My husband and I and my three daughters,” she replies. “What are the ages of
your daughters?” “The product of their ages is 36 and the sum of their ages is the
house number.” The census taker looks at the house number, thinks, and says,
“You haven’t given me enough information to determine the ages.” “Oh, you're
right,” she replies, “Let me also say that my eldest daughter is asleep upstairs.”
“Ah! Thank you very much!” What are the ages of the daughters? (The problem
requires “reasonable” mathematical interpretations of its words.)

1.26. (+) Two mail carriers meet on their routes and have a conversation. A:
“I know you have three sons. How old are they?” B: “If you take their ages,
expressed in years, and multiply those numbers, the result will equal your age.”
A: “But that’s not enough to tell me the answer!” B: “The sum of these three
numbers equals the number of windows in that building.” A: “Hmm [pause]. But
it’s still not enough!” B: “My middle son is red-haired.” A: “Ah, now it’s clear!”
How old are the sons? (Hint: The ambiguity at the earlier stages is needed to
determine the solution for the full conversation.) (G. P. Klimov)

1.27. Determine the set of real solutions to |x/(x + 1)| < 1.

1.28. (!) Application of the AGM Inequality.
a) Use Proposition 1.4 to prove that x(¢ — x) is maximized when x = ¢/2.
b) For a > 0, use part (a) to find the value of y maximizing y(c — ay).

1.29. Let x, y,z be nonnegative real numbers such that y + z > 2. Prove that
(x + y + 2)? > 4x + 4yz. Determine when equality holds.
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1.30. (!) Let x, y, 4, v be real numbers.
a) Prove that (xu + yv)? < (x2 + y%)(u? + v?).
b) Determine precisely when equality holds in part (a).

1.31. (+) Extensions of the AGM Inequality.

a) Prove that 4xyzw < x* + y* + z* + w* for real numbers x, y, z, w. (Hint:
Use the inequality 2tu < 12 + u? repeatedly.)

b) Prove that 3abc < a® + b3 + ¢ for nonnegative a, b, c. (Hint: In the in-
equality of part (a), set w equal to the cube root of xyz.)

1.32. (!) Assuming only arithmetic (not the quadratic formula or calculus), prove
that{x e R: x2—2x -3 <0}={xecR: -1 <x < 3}.

1.33. Let S = {(x, y) € N2 (2 —x)(2 + y) > 2(y — x)}. Prove that § = T, where
T={(1,1),(1,2),(1,3),(21),E, D}

1.34. Let S = {(x,y) e R®: (1 — x)(1 — y) > 1 — x — y}. Give a simple description
of S involving the signs of x and y.

1.35. (!) Determine the set of ordered pairs (x, y) of nonzero real numbers such
that x/y + y/x > 2.

1.36. Let S = [3] x {3] (the Cartesian product of {1, 2, 3} with itself). Let T be the
set of ordered pairs (x, y) € Z x Zsuchthat 0 < 3x+y—4 < 8. Provethat S C T.
Does equality hold?

1.37. Determine the set of solutions to the general quadratic inequality ax2 +
bx + ¢ < 0. Express the answer using linear inequalities or intervals. (Use the
quadratic formula; the complete solution involves many cases.)

1.38. Let S = {x € R: x(x — 1)(x — 2)(x — 3) < 0}. Let T be the interval (0, 1), and
let U be the interval (2, 3). Obtain a simple set equality relating S, T, U.

1.39. ()Given n € N, let ay, as, . .., a, be real numbers such that a; <a; <--- <a,.
Express {x ¢ R: (x — a;)(x — a2) - - - (x — a,) < 0} using the notation for intervals.
(For convenience, use (—o0, a) to denote {x € R: x < a}.)

1.40. Let A and B be sets. Explain why the two sets (A — B) U (B — A) and
(AU B) — (AN B) must be equal. Check this when A is the set of states in the
United States whose names begin with a vowel and B is the set of states in the
United States whose names have at most six letters.

1.41. (-) Let A, B, C be sets. Explain the relationships below. Use the definitions

of set operations and containment, with Venn diagrams to guide the argument.
a)ACAUB,and ANB C A. d)AC Band BC Cimply A CC.
b)A— B C A. e)AN(BNC)=(ANB)NC.
c0ANB=BNA,andAUB=BUA. DAUBUC)=(AUB)UC.

1.42. Let A = {January, February, ..., December}. Given x € A, let f(x) be the
number of days in x. Does f define a function from A to N?

1.48. (-) Let S = {(x, y) € R?%: 2x + 5y < 10}. Graph S. Explain how the answer
changes when the constraint is 2x + 5y < 10.
144, (HLet S ={(x,y) e R2: x2 4+ y2 < 100}. Let T = {(x,y) e R®%: x + y < 14).
a)Graph SNT.
b) Count the points in § N T whose coordinates are both integers.
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1.45. () Determine whether the rules below define functions from R to R.
a) f(x)=|x—1]ifx <4and f(x) = x| —1ifx > 2.
b) fx)=|x-1|ifx <2and f(x) = |x| - 1ifx > —1.
o) f(x)=((x+38)2—-9)/xifx #0and f(x) =6ifx =0.
d) fx)=((x+3)2-9)/xifx>0and f(x) =x+6ifx < 7.
e)f(x)=x/ﬁifx >2, f(x)=xif0<x <4,and f(x) = —xforx < 0.

1.46. Determine the images of the functions f: R — R defined as follows:
a) f(x) = x2/(1 + x2). b) f(x) = x/(1 +|x|).

1.47. Let f: N x N — R be defined by f(a, b) = (a + 1)(a + 2b)/2.

a) Show that the image of f is contained in N.

b) (+) Determine exactly which natural numbers are in the image of f. (Hint:
Formulate a hypothesis by trying values.)

1.48. Give several descriptions of the function f: [0, 1] — [0, 1} defined by f(x) =
1 — x. Compare with Example 1.29.

1.49. () Let f and g be functions from R to R. For the sum and product of f
and g (see Definition 1.25), determine which statements below are true. If true,
provide a proof; if false, provide a counterexample.

a) If f and g are bounded, then f + g is bounded.

b) If f and g are bounded, then fg is bounded.

¢) If f + g is bounded, then f and g are bounded.

d) If fg is bounded, then f and g are bounded.

e) If both f + g and fg are bounded, then f and g are bounded.

1.50. (!) For S in the domain of a function f, let f(5) = {f(x): x € S}. Let C and
D be subsets of the domain of f.

a) Prove that f(CU D) C f(C)U f(D).

b) Give an example where equality does not hold in part (a).

1.51. When f: A — B and S C B, we define /;(S) = {x € A: f(x) € S}. Let X and
Y be subsets of B.

a) Determine whether /,(X UY) must equal /,(X) U I;(Y).

b) Determine whether I;(X N Y) must equal /,(X) N I;(Y).
(Hint: Explore this using the schematic representation described in Remark 1.22.)

1.52. Let M and N be nonnegative real numbers. Suppose that [x + y| < M and
[xy| < N. Determine the maximum possible value of x as a function of M and N.

1.53. Solve Application 1.38 by using inequalities rather than graphs.

1.54. M LetS={(x,y)eR®: y<xandx+3y>8andx < 8).

a) Graph the set S.

b) Find the minimum value of x + y such that (x, y) € S. (Hint: On the graph
from part (a), sketch the level sets of the function f defined by f(x,y) =x+y.)

1.55. (+) Let F be a field consisting of exactly three elements 0, 1, x. Prove that
x +x = 1 and that x - x = 1. Obtain the addition and multiplication tables for F.

1.56. (+) Is there a field with exactly four elements? Is there a field with exactly
six elements?




Chapter 2

Language and Proofs

Understanding mathematical reasoning requires familiarity with the
precise meaning of words like “every”, “some”, “not”, “and”, “or”, etc.; these
arise often in analyzing mathematical problems. Relevant aspects of lan-
guage include word order, quantifiers, logical statements, and logical sym-

bols. With these, we can discuss elementary techniques of proof.

TWO THEOREMS ABOUT EQUATIONS

We begin with two problems that illustrate both the need for careful
use of language and the variety of techniques in proofs.

2.1. Definition. A linear equation in two variables x and y is an equa-
tion ax + by = r, where the coefficients a, b and the constant r are
real numbers. A line in R? is the set of pairs (x, y) satisfying a linear
equation whose coefficients a and b are not both 0.

2,2)

—x+2y=2 2x —y=2

Geometric intuition suggests three possibilities for a pair of linear
equations in two variables. If each equation describes a line, then the
lines may intersect in one point, may be parallel, or may be identical.
The equations then have one, none, or infinitely many common solutions,
respectively. We can analyze this without relying on geometric intuition,
because we have defined “line” using only arithmetic of real numbers.

25
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2.2. Theorem. Let ax + by = r and cx + dy = s be linear equations in
two variables x and y. If ad — bc # 0, then there is a unique common
solution. If ad — bc = 0, then there is no common solution or there
are infinitely many, depending on the values of r and s.

Proof: If all four coefficients are zero, then there is no solution unless
r = s = 0, in which case all pairs (x, y) are solutions. Otherwise, at
least one coefficient is nonzero. By interchanging the equations and/or
interchanging the roles of x and y, we may assume thatd # 0. We can now
solve the second equation for y, obtaining y = (s — cx)/d. By substituting
this expression for y into the first equation and simplifying, we obtain
(@ — %)x + % = r. Multiplying by d yields (ad — bc)x + bs = rd.
When ad — bc # 0, we may divide by ad — bc to obtain x = 29=".
Substituting this into the equation for y yields the unique solution
. y) = (rd—bs as—rC)
Y =\ad —be’ ad —be/’
When ad — bc = 0, the equation for x becomes bs = rd. If bs # rd, then
there is no solution. If bs = rd, then for each x we obtain the solution
(x,y) = (x, (s — cx)/d); here there are infinitely many solutions. a

When ad — be # 0, the equations define lines with one common point.
When ad — bc = 0 and both equations describe lines, there may be no
solution (parallel lines) or infinitely many solutions (the lines coincide).
An equation does not describe a line if both its coefficients are 0; here
there is no solution unless the equation is Ox + Oy = 0, in which case the
common solutions are the solutions to the other equation in the pair.

In the proof, avoiding division by 0 leads us to consider cases. No
single solution formula holds for all pairs of linear equations; the form
of the solution changes when ad — bc = 0. The solution statement itself
requires careful attention to language.

Our next argument uses the fundamental method of proof by contra-
diction; we suppose that the desired conclusion is false and then derive a
contradiction from this hypothesis. The method is particularly useful for
proving statements of nonexistence. Here we combine the method of proof
by contradiction with an understanding of rational numbers and several
elementary observations about odd and even numbers.

2.3. Theorem. If a, b, ¢ are odd integers, then ax? + bx + ¢ = 0 has no
solution in the set of rational numbers.

Proof: Suppose that there is a rational solution x. We write this as p/g
for integers p, . We may assume that p/q expresses x “in lowest terms”,
meaning that p and ¢ have no common integer factor larger than 1. From
ax? + bx + ¢ = 0 we obtain ap? + bpq + cq* = 0 after multiplying by ¢2.
We obtain a contradiction by showing that ap? + bpg + c¢? cannot
equal 0. We do this by proving the stronger statement that it is odd.
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Because we expressed x as a rational number in lowest terms, p and q
cannot both be even. If both are odd, then the three terms in the sum
are all odd, since the product of odd numbers is odd. Since the sum of
three odd numbers is odd, we have the desired contradiction in this case.
If p is odd and ¢ is even (or vice versa), then we have the sum of two
even numbers and an odd number, which again is odd. In each case, the
assumption of a rational solution leads to a contradiction. a

QUANTIFIERS AND LOGICAL STATEMENTS

Understanding a subject and writing clearly about it go together. We
next discuss the use of well-chosen words and symbols to express math-
ematical ideas precisely. The language of mathematical statements will
become familiar as we use it in later chapters to solve problems.

Using proof by contradiction requires understanding what it means
for a statement to be false. Consider the sentence “Every classroom has a
chair that is not broken”. Without using words of negation, can we write
a sentence with the opposite meaning? This will be easy once we learn
how logical operations are expressed in English.

2.4. Example. Negation of simple sentences. What is the negation of
“All students are male”? Some would say, incorrectly, “All students are
not male”. The correct negation is “At least one student is not male”.
Similarly, the negation of “all integers are odd” is not “all integers are not
odd”; the correct negation is “at least one integer is even”. ]

Common English permits ambiguities; the listener can obtain the
intended meaning from context. Mathematics must avoid ambiguities.

2.5. Example. Word order and context. Consider the sentence “There is
a real number y such that x = y® for every real number x”. This seems to
say that some number y is the cube root of all numbers, which is false. To
say that every number has a cube root, we write “For every real number
x, there is a real number y such that x = y3”.

In both English and mathematics, meaning depends on word order.
Compare “Mary made Jane eat the food”, “Eat, Mary; Jane made the
food”, and “Eat the food Mary Jane made”. Meaning can also depend on
context, as in “The bartender served two aces”. This may have different
meanings, depending on whether we are watching tennis or relaxing in
a bar on an airbase. Mathematics can present similar difficulties; words
such as “square” and “cycle” have several mathematical meanings. ]

The fundamental issue in mathematics is whether mathematical
statements are true or false. Before discussing proofs, we must agree
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on what to accept as mathematical statements. We first require correct
grammar for both words and mathematical symbols. Grammar eliminates
both “food Mary Jane” and “1+ =".

The sentences “1 + 1 = 3” and “1 + 1 < 3” are mathematical state-
ments, even though the first is false. Similarly, “(1 + 1)42 is 96 more than
4000 is acceptable. We accept grammtically correct assertions where
performing the indicated computations determines truth or falsity. This
computational criterion extends to more complicated operations and to
objects defined using sets and numbers.

We also consider general assertions about many numbers or objects,
such as “the square of each odd integer is one more than a multiple of 8”.
This statement is closely related to the list of statements “12 =1+ 0 - 8",
“2 =1+4+1.8,“%%2 =1+3-8" ---. We can describe many related
mathematical statements by introducing a variable. If P(x) is a math-
ematical statement when the variable x takes a specific value in a set S,
then we accept as mathematical statements the sentences below. They
have different meanings when S has more than one element.

“For all x in S, the assertion P(x) is true.”
“There exists an x in S such that the assertion P(x) is true.”

2.6. Example. The sentence “x? — 1 = 0” by itself is not a mathematical
statement, but it becomes one when we specify a value for x. Consider

“Forallx e {1, -1},x2-1=0."
“Forallx € {1,0},x2—1=0."
“There exists x € {1, 0} such that x2 -1 =0.”

All three are mathematical statements. The first is true; there are two
values of x to check, and each satisfies the conclusion. The second state-
ment is false, and the third is true. a

If it is not possible to assign “True” or “False” to an assertion, then it
is not a mathematical statement. Consider the sentence “This statement
is false”; call it P. If the words “this statement” in P refer to another
sentence Q, then P has a truth value. If “this sentence” refers to P itself,
then P must be false if it is true, and true if it is false! In this case, P has
no truth value and is not a mathematical statement.

2.7. Definition. We use uppercase “P, Q, R ---” to denote mathematical
statements. The truth or falsity of a statement is its truth value.
Negating a statement reverses its truth value. We use — to indicate
negation, so “=~P” means “not P”. If P is false, then —P is true.

In the statement “For all x in S, P(x) is true”, the variable x is
universally quantified. We write this as (Vx € S)P(x) and say that
V is a universal quantifier. In “There exists an x in S such that
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P(x) is true”, the variable x is existentially quantified. We write
this as (Ix € S)P(x) and say that 3 is an existential quantifier.
The set of allowed values for a variable is its universe. [ |

2.8. Remark. English words that express quantification. Typically, “ev-
ery” and “for all” represent universal quantifiers, while “some” and “there
is” represent existential quantifiers. We can also express universal quan-
tification by referring to an arbitrary element of the universe, as in “Let x
be an integer,” or “A student failing the exam will fail the course”. Below
we list common indicators of quantification.

Universal (V) (helpers) Existential (3) (helpers)
for [all], for every for some

if then there exists such that
whenever, for, given at least one for which
every, any satisfies some satisfies
a, arbitrary must, is has a such that
let be

The “helpers” may be absent. Consider “The square of a real number is
nonnegative.” This means x2 > 0 for every x € R; it is not a statement
about one real number and cannot be verified by an example. a

In conversation, a quantifier may appear after the expression it quan-
tifies. “I drink whenever I eat” differs from “Whenever I eat, I drink” only
in what is emphasized. Similarly, we easily understand “The AGM In-
equality states that (a + b)/2 > +/ab for every pair a, b of positive real
numbers” and “The value of x2 — 1 is 0 for some x between 0 and 2”. These
quantifiers appear at the end for smoother reading. Error is unlikely in
sentences with only one quantifier, but the order of quantification matters
when there is more than one.

2.9. Remark. Order of quantifiers. We adopt a convention to avoid am-
biguity. Consider “If n is even, then n is the sum of two odd numbers”.
Letting E and O be the sets of even and odd integers, and letting P(n, x, y)
be “n = x + y”, the sentence becomes

(Vn € EY(3x,y € O)P(n,x,y).

In this format, the value chosen for a quantified variable remains
unchanged for later expressions but can be chosen in terms of variables
quantified earlier. When we reach (3x,y € 0)P(n, x, y), we treat “n” as
a constant, already chosen. We use the same convention when writing
mathematics in English: quantifiers appear in order at the beginning of
the sentence so that the value of each variable is chosen independently of
subsequently quantified variables. [ ]
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2.10. Example. Parameters and implicit quantifiers. Consider the
exercise “Let @ and b be real numbers. Prove that the equation
ax? + bx = a has a real solution.” Using quantifiers, this becomes
(Ya, b € R)(3x € R)(ax? + bx = a). In solving the problem, we treat a and
b as parameters. Although these are variables and we must find a solu-
tion for each choice of these variables, the scope of the quantification is
that we treat a and b as constants when we study x.

We find a suitable x in terms of @ and ». Whena =0, x = 0
works for all 5. When a # 0, the quadratic formula tells us that x =
(—b++/b% + 4a2) /2a works. This is real (since positive real numbers have
square roots), and it satisfies the equation.

The negative square root also yields a solution. We do not need it,
because the statement asked only for the existence of a solution. |

2.11. Example. Order of quantifiers. Compare the statements below.
(Yx € A)@y € B)P(x,y) 3y € B)(¥x € A)P(x, )

Regardless of the meanings of A, B, P, the second statement always im-
plies the first. The first statement is true if for each x we can pick a y
that “works”. For the second statement to be true, there must be a single
y that will always work, no matter which x is chosen.

Simple examples clarify the distinction. Let A be the set of children,
let B be the set of parents, and let P(x, y) be “y is the parent of x”. The
first statement is true, but the second statement is too strong and is not
true. Another example occurred in Example 2.5, with A = B = R, and
with P(x, y) being “x = y3”. Consider also the statement in Remark 2.9.

Sometimes both statements are true. For example, let A = B = R,
and let P(x, y) be “xy =0". ]

2.12. Remark. Negation of quantified statements. After placing a state-
ment involving quantifiers in the conventional order, negating the state-
ment is easy. If it is false that P(x) is true for every value of x, then there
must be some value of x such that P(x) is false, and vice versa. Similarly,
if it is false that P(x) is true for some value of x, then P(x) is false for
every value of x. Thus in notation,

—[(Vx)P(x)] has the same meaning as (3x)(—P(x)).
—=[(3x) P(x)] has the same meaning as (Vx)(—P(x)).

Note that when using logical symbols, we may add matched parentheses
or brackets to clarify grouping. |

Understanding negation of quantified statements by passing the
negation through the quantifier and changing the type of quantifier is
imperative for understanding the mathematics in this book.
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When negating quantified statements with specified universes, one
must not change the universe of potential values. Also, when negating
(Vx) P(x) or (3x) P(x), it may be that P(x) itselfis a quantified statement.

2.13. Example. Negation involving universes. The negation of “Every
Good Boy Does Fine” (a mnemonic for reading music) is “some good boy
does not do fine”; it says nothing about bad boys. The negation of “Every
chair in this room is broken” is “Some chair in this room is not broken”; it
says nothing about chairs outside this room.

Similarly, the negation of the statement (Vn € N)(3x € A)(nx < 1) is
(3n € N)(Vx € A)(nx > 1). The negated sentence means that the set A
has a lower bound that is the reciprocal of an integer. It does not mention
values of n outside N or values of x outside A. |

2.14. Example. Let us rephrase “It is false that every classroom has a
chair that is not broken”. The quantifiers make it improper to cancel
the “double negative”; the sentence “every classroom has a chair that is
broken” has a different meaning.

The original statement has a universal quantifier (“every”) and an ex-
istential quantifier (“has a”). By successively negating these quantifiers,
we obtain first “There is a classroom that has no chair that is not broken”
and then “There is a classroom in which every chair is broken”.

We can also express this manipulation symbolically. Let R denote the
set of classrooms. Given a room r, let C(r) denote the set of chairs in r.
For a chair ¢, let B(c) be the statement that ¢ is broken. The successive
statements (all having the same meaning) now become

~[(¥r € R)@Ec € C(r))(=B(c))]

@r € R)(—[Bc € C(r))(-B(c))])
(3r € R)(Yc € C(r))B(c). ]

2.15. Example. In Definition 1.31, we defined bounded function. We
negate this to obtain “f is unbounded if for every real number M, some
real number x satisfies | f(x)| > M.” In notation, the two conditions are

bounded: (AM € R)(Vx € R)(|f(x)| < M)
unbounded: (VM € R)(3x € R)(|f(x)| > M).

Thus unboundedness implies (Vn € N)(3x, € R)(|f(x,)| > n). |

COMPOUND STATEMENTS

The negation of a logical statement is another logical statement. We
can also use the connectives “and”, “or”, “if and only if”, and “implies” to
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build compound statements. For each choice of truth values for the com-
ponent statements, the compound statement has a specified truth value;
this constitutes the defininition of the connective.

2.16. Definition. Logical connectives. In the following table, we define
the operations named in the first column by the truth values specified
in the last column.

Name Symbol Meaning Condition for truth
Negation -P not P P false

Conjunction PAQ PandQ both true

Disjunction PvQ PorQ at least one true
Biconditional P& Q Pif&onlyif Q same truth value
Conditional P = Q P implies Q 0 true whenever P true

2.17. Remark. Disjunctions. The meaning of “or” in mathematics differs
from its common usage in English. In response to “Are you going home or
not?”, the answer “Yes” causes annoyance despite being logically correct;
in common English the word “or” means “one or the other but not both”. In
mathematics, this usage is exclusive-or; we reserve or for disjunction.
Disjunction is more common in mathematics than exclusive-or be-
cause and and or act as quantifiers. A conjunction is true if all of its
component statements are true; thus and is a universal quantifier. A dis-
junction is true if af least one of its component statements is true; thus or
is an existential quantifier. |

In the conditional statement P = Q, we call P the hypothesis and
0 the conclusion. The statement Q = P is the converse of P = Q.

2.18. Remark. Conditionals. Conditional statements are the only type in
Definition 2.16 whose meaning changes when P and Q are interchanged.
There is no general relationship between the truth values of P = Q and
Q = P. Consider three statements about a real number x: P is “x > 07,
Qis“x2> 0", and Ris“x+1>1". Here P = Qistruebut 0 = P is
false. On the other hand, both P = R and R = P are true.

Note that here x is a variable. We have dropped x from the notation
for the statements because the context is clear. Technically, when we
write P = Q here, we mean (Vx € R)(P(x) = Q(x)).

A conditional statement is false when and only when the hypothesis
is true and the conclusion is false. When the hypothesis is false, the con-
ditional statement will be true regardless of what the conclusion says and
whether it is true. For example, if S is “This book was published in the
year 73”, then S = P is true, no matter what P is.

It may be helpful to read the conditional as “if-then” instead of “im-
plies”. Below we list several ways to say P = Q in English. |
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If P (is true), then Q (is true). P is true only if Q is true.
Q is true whenever P is true. P is a sufficient condition for Q.
Q is true if P is true. Q is a necessary condition for P.

When a logical statement is built from elementary statements using
connectives, we treat the elementary statements as variables in the uni-
verse {True, False}. Given their values, Definition 2.16 yields the truth
value of the full expression. A listing of these computations for each choice
of truth values of the elementary statements is a truth table.

2.19. Example. We give one example of a truth table to emphasize again
the meaning of conditional statements. We want to know whether the
expression R given by (P = Q) & ((—P) v Q) is always true, no matter
what P and Q represent. Such an expression is called a tautology. Each
of P and Q may be true or false; we consider all cases. |

| P20 | =P | =P)vQ |

=33
=g (0
N R R

R
T
T
T
T

=3T3
_H3TS

Two logical expressions X, Y are logically equivalent if they have
the same truth value for each assignment of truth values to the variables.
Equivalences allow us to rephrase statements in more convenient ways.

2.20. Remark. Elementary logical equivalences. We may substitute P for
—(—P) whenever we wish, and vice versa. Similarly, P v Q is equivalent
to Qv P,and P A Q is equivalent to Q A P. Whenever P and Q are state-
ments, we may substitute the expression in the right column below for the
corresponding expression in the left column (or vice versa); they always
have the same truth value. We could verify these equivalences by manip-
ulating symbeols in truth tables, but it is more productive to understand
them using the English meanings of the connectives.

a) =(PAQ) =P)v(~Q)

b)  —~(PVQ) =P)A(—Q)
o ~(P=0Q) PACFQ)

d) P& QO (P=20)A(Q=>P)
e) PvQ -Py=20
) P=0Q —Q)= (—P)

Equivalences (a) and (b) present our understanding of “and” and “or”
as universal and existential quantifiers, respectively, over their compo-
nent statements (see Remark 2.17). These two equivalences are called de
Morgan’s laws in honor of the logician Augustus de Morgan (1806—-1871).
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Equivalences (c) and (d) restate the definitions of the conditional and
biconditional. A conditional statement is false precisely when the hypoth-
esis is true and the conclusion is false. The biconditional is true precisely
when the conditional and its converse are both true.

Each side of (e) is false precisely when P fails and Q fails. Each side
of (f) fails precisely when P is true and Q is false. |

2.21. Remark. Logical connectives and membership in sets. Let P(x) and
Q(x) be statements about an element x from a universe U. Often we write
a conditional statement (Vx € U)(P(x) = Q(x)) as P(x) = Q(x) or simply
P = Q with an implicit universal quantifier.

The hypothesis P(x) can be interpreted as a universal quantifier in
another way. With A = {x € U : P(x) is true}, the statement P(x) = Q(x)
can be written as (Vx € A)Q(x).

Another interpretation of P(x) = Q(x) uses set inclusion. With B =
{x € U: Q(x)istrue), the conditional statement has the same meaning as
the statement A C B. The converse statement Q(x) = P(x) is equivalent
to B C A; thus the biconditional P < Q is equivalent to A = B.

We can alternatively interpret operations with sets using logical con-
nectives and membership statements. When P is the statement of mem-
bership in A and Q is the statement of membership in B, the statement
A = B has the same meaning as P < Q. Below we list the correspondence
for other set operations. ]

x € A€ s not (x € A) & —(x € A)
x€AUB & (xeA)or(xeB) & ((xeAVExeB)
x€ANB & (xeA)and(xeB) & ((xeAAKxeB)

ACB & (Vx € A)(x € B) & (xeA)=>(x€B)

The understanding of union and intersection in terms of quantifiers
allows us to extend the definitions of union and intersection to apply to
more than two sets. The intersection of a collection of sets consists of all
elements that belong to all of the sets. The union of a collection of sets
consists of all elements that belong to at least one of the sets.

2.22. Remark. The correspondence between P < Q and A = B in Re-
mark 2.21 highlights an important phenomenon. Expressions that repre-
sent “being the same” can be interpreted as two instances of comparison.
When x and y are numbers, the statement x = y includes two pieces of
information, x < y and y < x. When A and B are sets, the equality
A = B includes two pieces of information, A € B and B C A. For logical
statements P and Q, similarly, P & Q means both P = Q and Q = P.
In some contexts, we prove equality by proving both comparisons. In
other contexts, we can prove equality directly, by using manipulations
that preserve the value, set, or meaning while transforming the first de-
scription into the second. [ |
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2.23. Example. de Morgan’s laws for sets. In the language of sets, de
Morgan’s laws (Remark 2.20a,b) become (1) (AN B)* = AU B¢, and
(2) (AU B)* = A° N B°. We verify (1) by translation into a logical equiva-
lence about membership, leaving (2) to Exercise 50. Given an element x,
let P be the property x € A, and let Q be the property x € B. Remarks
2.20-2.21 imply that

x€(ANB)Y & ~(PAQ) & P)V(—Q) & (x¢A)Vix¢B)

Alternatively, a Venn diagram makes the reasoning clear. a

Although relationships between sets correspond to logical statements
about membership, the two expressions tell the same story in different
languages. One must not mix them. For example, A N B is a set, not a
statement; it has no truth value. The notation “(A N B) & A¢U B¢” has
no meaning, but (A N B) = A°U B¢ is true whenever A and B are sets.

ELEMENTARY PROOF TECHNIQUES

The business of mathematics is deriving consequences from hypothe-
ses—that is, proving conditional statements. Although we prove some
biconditionals by chains of equivalences, as in Example 2.23, usually we
prove a biconditional by proving a conditional and its converse, as sug-
gested by Remark 2.20d. Also, we can prove the universally quantified
statement “(Vx € A)Q(x)” by proving the conditional statement “If x € A,
then Q(x)”; the two have the same meaning. (For example, consider the
two sentences when A is the set of even numbers and Q(x) is “x2 is even”.)

2.24. Remark. Elementary methods of proving P = Q. The direct
method of proving P = (Q is to assume that P is true and then to ap-
ply mathematical reasoning to deduce that Q is true. When P is “x € A”
and Q is “Q(x)”, the direct method considers an arbitrary x € A and
deduces Q(x). This must not be confused with the invalid “proof by exam-
ple”. The proof must apply to every member of A as a possible instance of
x, because “(x € A) = Q(x)” is a universally quantified statement.

Remark 2.20f suggests another method. The contrapositive of P =
Q is -Q = —P. The equivalence between a conditional and its contra-
positive allows us to prove P = Q by proving -Q = —P. This is the
contrapositive method.

Remark 2.20c suggests another method. Negating both sides (P =
Q) & —[P A (—Q)]. Hence we can prove P = Q by proving that P and
—Q cannot both be true. We do this by obtaining a contradiction after
assuming both P and —Q. This is the method of contradiction or indirect
proof. We summarize these methods below:
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Direct Proof: Assume P, follow logical deductions, conclude Q.

Contrapositive: Assume —Q, follow deductions, conclude —P.

Method of Contradiction: Assume P and —Q, follow deductions,
obtain a contradiction. |

We begin with easy examples of the direct method, including state-
ments used in proving Theorem 2.3.

2.25. Example. If integers x and y are both odd, then x + y is even. Sup-
pose that x and y are odd. By the definition of “odd”, there exist integers
k,1 such that x = 2k + 1 and y = 2/ + 1. By the properties of addition and
the distributive law, x + y = 2k + 2/ + 2 = 2(k + [ + 1). This is twice an
integer, so x + y is even.

The converse is false. When x, y are integers, it is possible that x + y
is even but x, y are not both odd. Compare this with the next example. B

2.26. Example. An integer is even if and only if it is the sum of two odd
integers. First we clarify what must be proved. Formally, the statement
is (Vx € Z)[(3k € Z)(x = 2k) & 3y, z € O)(x = y + z)], where O is the set
of odd numbers. If x = 2k is even, then x = (2k — 1) + 1, which expresses
x as the sum of two odd integers. Conversely, let y and z be odd. By
the definition of “odd”, there exist integers k, ! such that y = 2k + 1 and
z=24+1.Theny+z=2k+1+2/+1=2k+1!+1), whichiseven. =&

2.27. Example. If x and y are odd, then xy is odd. If x and y are odd,
then there are integers k,/ such that x = 2k +1and y = 2/ + 1. Now
xy = 4kl + 2k + 21 + 1 = 2(2kl + k + 1) + 1. Since this is one more than
twice an integer, xy also is odd. |

A special case of Example 2.27 is “x odd = x2 odd”. Here the con-
clusion is “There is an integer m such that x2 = 2m + 1”. We can prove
an existential conclusion by providing an example: in this case a value
m (constructed in terms of x) such that the statement is true. The direct
method often succeeds when the conclusion is existentially quantified.

2.28. Example. An integer is even if and only if its square is even. If n is
even, then we can write n = 2k, where k is an integer. Now n? = 4k? =
2(2k?), proving that “n even” implies “n2 even” by the direct method. For
the converse, we want to prove “n? even implies n even”, but this we have
already done! Since integers are even or odd, the desired implication is
the contrapositive of “n odd implies n% odd”. |

2.29. Remark. Converse versus contrapositive. Proving the biconditional
statement P < Q requires proving one statement from each column be-
low. Each statement is the converse of the other in its row. Each statement
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is the contrapositive of the other in its column. Every conditional is equiv-
alent to its contrapositive, so proving the two statements in one column
would be proving the same fact twice.

P=0 Q=P

For example, consider “the product of two nonzero real numbers is
positive if and only if they have the same sign”. The axioms for real num-
bers imply that if x and y have the same sign, then xy is positive. We
might then argue, “‘Now suppose that xy is negative. This implies that x
and y have opposite signs.” This accomplishes nothing; we have proved
the contrapositive of the first conditional, not its converse. Instead, we
must prove “If xy is positive, then x and y have the same sign” or “If x and
y have opposite signs, then xy is negative”.

We can interpret the first line of the display above as the direct
method and the second line as the contrapositive method. To include
the method of contradiction, we could add the line below:

—(P A—Q) —(Q A—P). 2

The next example uses the contrapositive and illustrates that care
must be taken to avoid unjustified assumptions.

2.30. Example. Consider the statement “If f (x) = mx+b and x # y, then
f(x) # f(»).” The direct method considers x < y and x > y separately
and obtains f(x) < f(y) or f(x) > f(y). This unsatisfying analysis by
cases results from “not equals” being a messier condition than “equals”.

We can use the contrapositive to retain the language of equalities and
reduce analysis by cases. When f(x) = f(y), weobtainmx +b =my + b
and then mx = my. If m # 0, then we obtain x = y.

If m = 0, then we cannot divide by m, and actually the statement
is false. The difficulty is that m is a variable in the statement we want
to prove, and we cannot determine its truth without quantifying m. The
statement is true if and only if m # 0. a

A universally quantified statement like “(Vx € U)[P(x) = Q(x)]” can
be disproved by finding an element x in U such that P(x) is true and Q(x)
is false. Such an element x is a counterexample. In Example 2.30,
m = 0 is a counterexample to a claim that the implication holds for all m.
We continue with another example of proof by contrapositive.

2.31. Example. If a is less than or equal to every real number greater than
b, then a < b. The direct method goes nowhere, but when we say “suppose
not”, the light begins to dawn. If a > b, then a > %2 > b. Thus a is not
less than or equal to every number greater than b. We have proved the
contrapositive of the desired statement. ]
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When the hypothesis of P = Q is universally quantified, its nega-
tion is existentially quantified. This can make the contrapositive easy;
given —Q, we need only construct a counterexample to P. This is the sce-
nario in Example 2.31; having assumed a > b, we need only construct a
counterexample to “a is less than every real x that is greater than b”.

The method of contradiction proves P = Q by proving that P and
—Q cannot both hold, thereby proving that P = Q cannot be false.

2.32. Example. Among the numbers y1, ..., y,, some number is as large
as the average. Let Y = y; +--- + y,. The average z is Y/n.

An indirect proof of the claim begins, “suppose that the conclusion is
false”. Thus y; < z for all y; in the list. If we sum these inequalities, we
obtain Y < nz, but this contradicts the definition of z, which yields Y = nz.
Hence the assumption that each element is too small must be false.

A direct proof constructs the desired number. Let y* be the largest
number in the set. We prove that this candidate is as large as the average.
Since y; < y* for all i, we sum the inequalties to obtain Y < ny* and then
divide by n to obtain z < y*. |

In Example 2.32, we did not derive the negation of the hypothesis; we
obtained a different contradiction. This is the method of contradiction.
Like the contrapositive method, it begins by assuming —Q when proving
P = Q. We need not decide in advance whether to deduce —P or to use
both P and —Q to obtain some other contradiction.

2.33. Example. There is no largest real number. If there is a largest real
number z, then for all x € R, we have z > x. When x is the real number
z + 1, this yields z > z + 1. Subtracting z from both sides yields 0 > 1.
This is a contradiction, and thus there is no largest real number. |

The method of contradiction works well when the conclusion is a
statement of non-existence or impossibility, because negating the conclu-
sion provides an example to use, like p/q in the proof of Theorem 2.3 or
z in Example 2.33. In one sense the method of contradiction (“indirect
proof”) has more power than the contrapositive, since we start with more
information (P and —Q), but in another sense it is less satisfying, because
we start with a situation that (we hope) cannot be true.

2.34. Remark. The consequences of false statements. Recall that a condi-
tional statement is false only if the hypothesis is true and the conclusion
is false. When the hypothesis cannot be true, we say the conditional fol-
lows vacuously. Similarly, every statement universally quantified over an
empty set is true; when there are no dogs in the class, the statement “Ev-
ery dog in the class has three heads” is true. In contrast, every statement
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existentially quantified over an empty set is false; when there are no dogs
in the class, the statement “Some dog in the class has four legs” is false!
Returning to the conditional, we have argued that P = Q is true
whenever P is false. This explains why a proof containing a single er-
ror in reasoning cannot be considered “nearly correct”; we can derive any
conclusion from a single false statement (see Exercise 44a). Bertrand Rus-
sell (1872-1970) once stated this in a public lecture and was challenged
to start with the assumption that 1 = 2 and prove that he was God. He
replied, “Consider the set {Russell, God}. If 1 = 2, then the two elements
of the set are one element, and therefore Russell = God.” [ ]

Students sometimes wonder about the meanings of the words “the-
orem”, “lemma”, “corollary”, etc. The usage of these words is part of
mathematical convention, like the notation f: A — B for functions and
the designations N, Z, Q, R for the number systems. (By the way, Q stands
for “quotient” and Z stands for “Zahlen”, the German word for numbers.)

In Greek, lemma means “premise” and theorema means “thesis to be
proved”. Thus a theorem is a major result whose proof may require con-
siderable effort. A lemma is a lesser statement, usually proved in order
to help prove other statements. A proposition is something “proposed”
to be proved; typically this is a less important statement or requires less
effort than a theorem. The word corollary comes from Latin, as a modifi-
cation of a word meaning “gift”; a corollary follows easily from a theorem
or proposition, without much additional work.

Theorems, Propositions, Corollaries, and LLemmas may all be used to
prove other results. In this book, these embody the central mathematical
development, while Examples, Solutions, Applications, and Remarks are
particular uses of or commentary on the mathematics. These two streams
are interwoven but can be distinguished by the titles of the items. The
first stream comprises the mathematical results that students might want
to remember for later application, while the second illuminates the first
and provides additional examples of problem-solving.

HOW TO APPROACH PROBLEMS

In this chapter we have discussed the language of mathematics and
elementary techniques of proof. We review some of these issues and dis-
cuss several additional ones that arise when solving problems.

Methods of proof.

The first step is making sure that one understands exactly what the
problem is asking. Definitions may provide a road map for what needs
to be verified. Sometimes, the desired statement follows from a theorem
already proved, and then one needs to verify that its hypotheses hold.
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Most problems request proofs of conditional statements. These state
that given circumstances produce certain results. Such sentences are of-
ten written using “if” and “then”, but implication can be expressed with
universal quantifiers and in many other ways (see Remark 2.8, Remark
2.18, and Exercise 10). Examples cannot provide proofs of such state-
ments. Implications need to be proved in Exercises 34—42.

The elementary techniques for proving implications are direct proof,
proof by contradiction, and proof of the contrapositive. The latter two
methods are called “indirect” proofs. When seeking a direct proof, one
can work from both ends. List statements that follow from the hypoth-
esis. List statements that suffice to imply the conclusion. When some
statement appears in both lists, the problem is solved.

When unsuccesful with the direct method, consider what would hap-
pen if the conclusion were false. If this leads to impossibility of some
consequence of the hypothesis (or of other known facts), then again the
problem is solved, using the method of contradiction. If the negation of
the hypothesis is obtained, then the contrapositive has been proved.

Students often wonder when to use indirect proof. The form of the
conclusion can provide a clue; when its negation provides something use-
ful to work with, indirect proof may be appropriate. This can happen with
obvious-sounding statements like Example 2.31. Often indirect proof is
appropriate for statements of nonexistence, as in Theorem 2.3, Example
2.33, and Exercise 40. The negation of the conclusion provides an exam-
ple, an object with specified properties. (In contrast, one can often prove
that something does exist by constructing an example and proving that it
has the desired properties; this is the direct method.)

Be aware of hypotheses and quantifiers.

An implication is true when the truth of its hypotheses guarantees
the truth of its conclusion. The sentence “if we add two even integers,
then the result is even” is true and easily proved, but the sentence “if we
add two integers, then the result is even” is false. The second sentence is
obviously missing a hypothesis (that the integers are even) that is needed
to make the conclusion true.

In more subtle statements, the same principles apply. Carefully dis-
tinguish the hypotheses and the desired conclusions. Remember that hy-
potheses can be expressed as universal quantifiers: “for all x € A” means
the same as “if x € A”. In writing a solution, check where the hypotheses
are used. If a hypothesis is not used, then either it is unnecessary (and
the proof yields a stronger statement) or an error has been made.

Solving a problem may require determining whether a statement with
many quantified variables is true or false. One must be able to identify
the universal and existential quantifiers, put them in proper order (see
items 2.9-2.11), and negate a quantified statement (see items 2.12-2.15).
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More about cases.

A universally quantified statement must be proved for all instances
of the variables. This includes statements phrased in the singular, like
“The square of an even number is even.” Writing (—4)2 = 16 = 2 - 8 does
not prove this, because here “an” means each individual. The sentence
means “If x is an even number, then x? is an even number.” Similarly, “Let
x be a positive real number” and “For x > 0” are universal quantifications;
the claim to be proved must be proved for every positive real number x.

Analysis by cases can arise when an argument is valid for some in-
stances but not for all. Consider showing that x(x + 1)/2 is an integer
whenever x is an integer. When x is even, we write x = 2k and compute
2k(2k+1)/2 = k(2k+ 1), where k is an integer. For odd x, we need a differ-
ent computation. We can avoid cases by observing that one of {x, x + 1} is
even and is divisible by 2. Combining cases via a unified argument leads
to a concise solution that captures the essence of the proof.

When several cases are treated in the same way, it may be possible
to reduce to a single case by using symmetry. We did this in proving The-
orem 2.2. Having disposed of the case where all four coefficients are zero
(which uses a different argument), we may assume that some coefficient
is nonzero. We would use the same arguments no matter which it is. By
writing the equations in the opposite order and/or switching the names
of the variables, we can arrange that the coefficient d is nonzero. We say
that symmetry allows us to reduce to the case where d is nonzero.

Similarly, when proving a statement about distinct real numbers x, y,
it may be helpful to assume by symmetry that x > y. The same argument
with the roles of x and y switched would apply when y > x, and we use
the symmetry in the problem to avoid writing out the argument twice.

On the other hand, sometimes a problem becomes simpler when we
introduce an additional hypothesis. This leads to two cases: when the
assumption is true and when it is false. Consider Exercise 33. The first
child knows that her hat is black or red. She considers these two cases to
seek a contradiction that will eliminate one. Perhaps further assumptions
will be needed, leading to subcases. Exercise 32 is similar; we consider
various assumptions. Assuming that Person A tells the truth yields an
immediate contradiction; knowing that A lies leads to further conclusions.

This method is known informally as “process of elimination”. If a
particular assumption seems to lead nowhere, try another! Remember
that eventually all possibilities must be considered. For example, when
the roles of variables x and y are not interchangeable in a problem, we
cannot use symmetry to reduce to x < y, but considering the cases x < y,
x =y, and x > y separately might lead to different arguments that work.

Finally, beware of overlooking cases that result from introducing un-
wanted hypotheses. In particular, be aware of the conditions under which
symbolic manipulations are valid. Since we cannot divide by zero, the
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equation y = mx can be solved for x only when m # 0. For all real y and
all nonzero real m, there is a unique x with y = mx. The case m = 0 has
not been considered and must be treated in some other way.

Taking square roots also requires care. For example, Exercise 1.19
has no solution for some choices of the perimeter p and area a, because
the algebraic solution involves a square root. Square roots exists only for
nonnegative numbers; this constrains the values p and a.

Equations and algebraic manipulations.

Consider the equation x2—10x+5 = —20. Manipulating the equation
yields (x — 5)2 = 0, which implies x = 5. This can be interpreted as the
conditional statement “If the equation holds, then x = 5”. Checking the
answer shows the converse assertion “If x = 5, then the equation holds”.
Together, the two steps yield the statement “The set of solutions to the
equation x2 — 10x + 5 = —20 is {5)".

Consider also the equation x2 = 5x. Dividing both sides by x yields
x = 5. Checking 5 in the equation yields “if x = 5, then the equation
holds”. The statement “If the equation holds, then x = 5” is false. The
correct assertion is “If the equation holds, then x = 0 or x = 5”. The
problem is that the division was valid only under the hypothesis that
x # 0. The solution in the remaining case was lost.

Algebraic manipulations can also introduce extraneous solutions.
Consider the equation x = 4. If we next write x2 = 4x, then we obtain
x2 — 4x = 0, with solutions x = 4 and x = 0. Multiplying by x introduced
the extraneous solution x = 0; it changed the solution set. Substitut-
ing the results of invalid manipulations into the original equation may or
may not expose the error.

Multiplying both sides of an equation in x by an expression f(x) intro-
duces all the zeroes of f as solutions; some may be extraneous. Dividing
by f(x) is invalid when f(x) can be zero; in this case solutions may be
lost. When manipulating an equation to seek equivalent statements, one
must check that the set of solutions never changes or analyze separately
the cases where it may change.

2.35. Example. The following argument alleges to prove that 2 = 1; it
must be wrong! What is the flaw?

Let x, y be real numbers, and suppose that x = y. This yields x? =
xy, which implies x2 — y2 = xy — y? by subtracting y? from both sides.
Factoring yields (x + y)(x — y) = y(x — y), and thus x + y = y. In the
special case x = y = 1, we obtain 2 = 1. ]

Sets and membership.
Various exercises in this chapter involve identities involving unions,
intersections, and differences of sets. These can be understood using Venn
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diagrams. Equality of expressions involving sets can be proved by show-
ing that an element belongs to the set given by one expression if and only
if it belongs to the set given by the other.

Reasoning about sets and subsets is parallel to reasoning about condi-
tional statements. The set-theoretic statement S C T can be interpreted
as “If x € S, then x € T”. Thus the logical statement P < Q is parallel to
the set-theoretic equality S = T (see Remarks 2.21-2.22).

Identities involving operations on sets (Exercises 50-53) and equiva-
lences involving logical connectives and statements (Exercises 43—46) are
universally quantified, with variables representing sets or statements.
Thus the proof must be valid for all instances.

In several of the exercises, two sets of real numbers are specified by
numerical constraints, and the problem is to show that the two sets are
the same. One can prove that each set is contained in the other, or one can
manipulate the constraints in ways that do not change the set of solutions.
In either approach, words should be used to explain the arguments.

Communicating mathematics.

Solutions to problems should be written using sentences that explain
the argument. Notation introduced to represent concepts in the discus-
sion should be clearly defined, and a symbol should not be used with
different meanings in a single discussion.

A convincing proof cannot depend on asking the reader to guess what
the writer intended. A well-written argument may begin with an overview
or with an indication of the method of proof. Such an indication is particu-
larly helpful when using the contrapositive or the method of contradiction.

When the writer gives no explanation of the method of proof and
merely lists some formulas, the reader can only assume that a direct
proof is being given, with each line derived from the previous line. This
gets students into trouble when they reduce a desired statement to a
known statement. In attempting to prove the AGM Inequality for all
nonnegative real numbers x, y, some students will write

VXY < (x +)/2
xy < (x +y)%/4
4xy < x? 4 2xy + y?
0<x?-2xy+y?
0<(x-— y)2, which is true.
Here the student has derived a true statement from the desired state-
ment; this does not prove the desired statement. Within the set of pairs of
nonnegative real numbers, these manipulations of the inequality have not

changed the set of solutions, so the steps are reversible to obtain the de-
sired inequality. Without words to indicate that this is what is intended,
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the proof is wrong. Note that the “proof” never used the hypothesis that
x,y > 0, and when x = y = —1 the claimed inequality fails.

One must always distinguish a statement from its converse. Deriving
a true statement Q from the desired statement P does not prove P! Let
P be the assertion “x + 1 = x + 2”. When we multiply both sides of P by
0, we obtain the true statement “0 = 0”; call this Q. Although Q is true
for all x and we have proved P = Q, the statement P is true for no x.

EXERCISES

2.1. Find the flaw in Example 2.35.

2.2. Show that the following statement is false: “If a and b are integers, then
there are integers m, n such that a = m + n and b = m — n.” What can be added to
the hypothesis of the statement to make it true?

2.3. Consider the following sentence: “If a is a real number, then ax = 0 implies
x = 0”. Write this sentence using quantifiers, letting P(a, x) be the assertion
“ax = 0” and Q(x) be the assertion “x = 0”. Show that the implication is false,
and find a small change in the quantifiers to make it true.

2.4. Let A and B be sets of real numbers, let f be a function from R to R, and let
P be the set of positive real numbers. Without using words of negation, for each
statement below write a sentence that expresses its negation.

a) For all x € A, thereis a b € B such that b > x.

b) There is an x € A such that, forallb € B, b > x.

c)Forallx,yeR, f(x)= f(y) =>x=y.

d) For all b € R, there is an x € R such that f(x) = b.

e)Forall x,y e Rand all ¢ € P, thereisa é € P such that |x — y| < é implies
f&x) = fl <e.

f) For all € € P, thereis a § € P such that, for all x, y € R, |x — y| < & implies
If&x) = fDl <e.

2.5. (=) Prove the following statements.

a) For all real numbers y, b, m with m # 0, there is a unique real number x
such that y = mx +b.

b) For all real numbers y, m, there exist b, x € R such that y = mx + b.

2.6. (—) Usage of language.

a) The following sentence appeared on a restaurant menu: “Please note that
every alternative may not be available at this time”. Describe the unintended
meaning. Rewrite the sentence to state the intended meaning clearly.

b) Give an example of an English sentence that has different meanings de-
pending on inflection, pronunciation, or context.

2.7. (=) Describe how the notion of an alibi in a criminal trial fits into our dis-
cussion of conditional statements.

2.8. From outside mathematics, give an example of statements A, B, C such that
A and B together imply C, but such that neither A nor B alone implies C.
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2.9. (—) The negation of the statement “No slow learners attend this school” is:T
a) All slow learners attend this school.
b) All slow learners do not attend this school.
¢) Some slow learners attend this school.
d) Some slow learners do not attend this school.
e) No slow learners attend this school.

2.10. Express each of the following statements as a conditional statement in “if-
then” form or as a universally quantified statement. Also write the negation
(without phrases like “it is false that”).

a) Every odd number is prime.

b) The sum of the angles of a triangle is 180 degrees.

c) Passing the test requires solving all the problems.

d) Being first in line guarantees getting a good seat.

e) Lockers must be turned in by the last day of class.

f) Haste makes waste.

g) I get mad whenever you do that.

h) I won't say that unless I mean it.

2.11. (!) Suppose I have a penny, a dime, and a dollar, and I say, “If you make a
true statement, I will give you one of the coins. If you make a false statement, I
will give you nothing.” What should you say to obtain the best coin?

2.12. A telephone bill y (in cents) is determined by y = mx + b, where x is the
number of calls during the month, and 4 is a constant monthly charge. Suppose
that the bill is $5.48 when 8 calls are made and is $5.72 when 12 calls are made.
Determine what the bill will be when 20 calls are made.

2.13. “In one year, my wife will be one-third as old as my house. In nine years, I
will be half as old as my house. I am ten years older than my wife. How old are
my house, my wife, and I?” Answer the question, stating the needed equations.

2.14. A circle is the set of ordered pairs (x, y) € R? such that x and y satisfy an
equation of the form x2 4 y% + ax + by = ¢, where ¢ > —(a® 4 b?)/4. The circle is
specified by the parameters a, b, c.
a) Using this definition, give examples of two circles such that
i) the circles do not intersect.
ii) the circles intersect in exactly one common element.
iii) the circles intersect in two common elements.
b) Explain why the parameter c is restricted as given.

2.15. The quadratic formula, revisited. We derive the quadratic formula by solv-
ing a system of linear equations for the two unknown solutions. The equation
ax? + bx + ¢ = 0 with a # 0 has real solutions r, s if and only if ax? + bx + ¢ =
a(x —r)(x — 5) (see Exercise 1.20). The calculation below shows that the factor-
ization exists if and only if b2 — 4ac > 0 and expresses r, s in terms of a, b, c.

a) By equating coefficients of corresponding powers of x, obtain the equations

From the 1955 High School Mathematics Exam (C. T. Salkind, Annual High
School Mathematics Examinations 1950-1960, Math. Assoc. Amer. 1961, p. 37.)
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r +s = —b/a and rs = c/a. Use these to prove that (r — 5)? = (b*> — 4ac)/a>.

b) From (a), obtain r + s = —b/a and r — s = +/b% — 4ac/a. Solve this system
for r,s in terms of a, b, c.

¢) What happens if the second equation in (b) is r — s = —+/b% — 4ac/a?

2.16. (!) Let f be a function from R to R.

a) Prove that f can be expressed in a unique way as the sum of two functions
g and A such that g(—x) = g(x) for all x € R and A(—x) = —h(x) for all x € R.
(Hint: Find a system of linear equations for the unknowns g(x) and A(x) in terms
of the known values f(x) and f(—x).)

b) When f is a polynomial, express g and / in terms of the coefficients of f.

2.17. Given f: R — R, let g(x) = § + 7= for all x such that f(x) # 1. Suppose
g(x) = g(—x) for all such x. Prove that f(x) f(—x) = 1 for all such x.

2.18. (!) Given a polynomial p, let A be the sum of the coefficients of the even
powers, and let B be the sum of the coefficients of the odd powers. Prove that
A’ - B? = p()p(-D).

2.19. Abraham Lincoln said, “You can fool all of the people some of the time, and
you can fool some of the people all of the time, but you can’t fool all of the people all
of the time.” Write this sentence in logical notation, negate the symbolic sentence,
and state the negation in English. Which statement seems to be true?

2.20. Using quantifiers, explain what it would mean for the first player to have a
“winning strategy” in Tic-Tac-Toe. (Don’t consider whether the statement is true.)

2.21. Consider the sentence “For every integer n > 0 there is some real number
x > 0 such that x < 1/n”. Without using words of negation, write a complete
sentence that means the same as “It is false that for every integer n > 0 there is
some real number x > 0 such that x < 1/n”. Which sentence is true?

2.22. Let f be a function from R to R. Without using words of negation, write
the meaning of “ f is not an increasing function”.

2.23. Consider f: R — R. Let S be the set of functions defined by putting g € S
if there exist positive constants ¢, a € R such that |g(x)| < c|f(x)| for all x > a.
Without words of negation, state the meaning of “g ¢ S”. (Comment: The set S
(written as O(f)) is used to compare the “order of growth” of functions.)

2.24. In simpler language, describe the meaning of the following two statements
and their negations. Which one implies the other, and why?

a) There is a number M such that, for every x in the set S, |x| < M.

b) For every x in the set S, there is a number M such that |x| < M.

2.25. Fora € Rand f: R — R, show that (a) and (b) have different meanings.
a) (Ve > 0)38 > O)l(lx —al < &) = (If(x) = f(@)| <€)l
b) (38 > 0)(Ye > O)[(Ix —al < 8) = (If(x) — f(a)| <€)l

2.26. For f: R — R, which of the statements below implies the other? Does there
exist a function for which both statements are true?

a) For every ¢ > 0 and every real number a, there is a § > 0 such that
|f(x) — f(a)| < € whenever |x — a| < 4.

b) For every ¢ > 0, there is a § > 0 such that | f(x) — f(a)] < € whenever
|x —a| < & and a is a real number.
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2.27. (+) For c e Rand f: R — R, interpret each statement below.

a) For all x € R and all § > 0, there exists ¢ > 0 such that [x| < § implies
[f(x) —c| <e.

b) For all x € R, there exists § > 0 such that, for all ¢ > 0, we have |x| < §
implies | f(x) — ¢| < €.

2.28. (!) Consider the equation x*y + ay +x = 0.

a) Show that the following statement is false. “For all a, x € R, there is a
unique y such that x*y +ay +x =0.”

b) Find the set of real numbers a such that the following statement is true.
“For all x € R, there is a unique y such that x*y + ay + x =0.”

2.29. (!) Extremal problems.

a) Let f be a real-valued function on S. In order to prove that the minimum
value in the image of f is 8, two statements must be proved. Express each of
these statements using quantifiers.

b) Let T be the set of ordered pairs of positive real numbers. Define f: T — R
by f(x,y) = max{x, y, % + %}. Determine the minimum value in the image of f.
(Hint: What must a pair achieving the minimum satisfy?)

2.30. (!) Consider tokens that have some letter written on one side and some
integer written on the other, in unknown combinations. The tokens are laid out,
some with letter side up, some with number side up. Explain which tokens must
be turned over to determine whether these statements are true:

a) Whenever the letter side is a vowel, the number side is odd.

b) The letter side is a vowel if and only if the number side is odd.

2.31. Which of these statements are believable? (Hint: Consider Remark 2.34.)
a) “All of my 5-legged dogs can fly.”
b) “I have no 5-legged dog that cannot fly.”
c) “Some of my 5-legged dogs cannot fly.”
d) “I have a 5-legged dog that cannot fly.”

2.32. A fraternity has a rule for new members: each must always tell the truth
or always lie. They know who does which. If I meet three of them on the street
and they make the statements below, which ones (if any) should I believe?

A says: “All three of us are liars.”

B says: “Exactly two of us are liars.”

C says: “The other two are liars.”

2.33. Three children are in line. From a collection of two red hats and three black
hats, the teacher places a hat on each child’s head. The third child sees the hats
on two heads, the middle child sees the hat on one head, and the first child sees
no hats. The children, who reason carefully, are told to speak out as soon as they
can determine the color of the hat they are wearing. After 30 seconds, the front
child correctly names the color of her hat. Which color is it, and why?

2.34. (!) For each statement below about natural numbers, decide whether it is
true or false, and prove your claim using only properties of the natural numbers.
a)lfneNandn? + (n + 1) = (n + 2)%, then n = 3.
b) For all n € N, it is false that (n — 1)® 4+ n® = (n + 1),

2.35. Prove that if x and y are distinct real numbers, then (x + 1)2 = (y + 1)% if
and only if x + y = —2. How does the conclusion change if we allow x = y?




48 Chapter 2: Language and Proofs

2.36. Let x be a real number. Prove that if |x — 1| < 1, then |x2 —4x + 3| < 3.

2.37. Given a real number x, let A be the statement “1 < x < 3”, let B be the

statement “x € Z”, let C be the statement x2 = 1, and let D be the statement
“x = 2”. Which statements below are true for all x € R?

a)A=C. e)C = (AAB).
b) B = C. ) D= [AABA(O).
¢c)(AAB)=C. g)(AvC)= B.

d) (AAB)= (CvV D).

2.88. Let x, y be integers. Determine the truth value of each statement below.
a) xy is odd if and only if x and y are odd.
b) xy is even if and only if x and y are even.

2.39. (!) A particle starts at the point (0, 0) € R? on day 0. On each day, it moves
one unit in a horizontal or vertical direction. For a,b € Z and k € N, prove that
it is possible for the particle to reach (a, b) on day k if and only if (1) |a| + |b| <k,
and (2) a + b has the same parity as k.

2.40. (') Checkerboard problems. (Hint: Use the method of contradiction.)

a) Two opposite corner squares are deleted from an eight by eight checker-
board. Prove that the remaining squares cannot be covered exactly by dominoes
(rectangles consisting of two adjacent squares).

b) Two squares from each of two opposite corners are deleted as shown on
the right below. Prove that the remaining squares cannot be covered exactly by
copies of the “T-shape” and its rotations.

- B

2.41. A clerk returns n hats to n people who have checked them, but not necessar-
ily in the right order. For which £ is it possible that exactly k£ people get a wrong
hat? Phrase your conclusion as a biconditional statement.

2.42, A closet contains n different pairs of shoes. Determine the minimum ¢ such
that every choice of ¢ shoes from the closet includes at least one matching pair of
shoes. For n > 1, what is the minimum ¢ to guarantee that two matching pairs of
shoes are obtained?

2.43. Using the equivalences discussed in Remark 2.20, write a chain of symbolic
equivalences to prove that P < Q is logically equivalent to Q & P.

2.44. Let P and Q be statements. Prove that the following are true.
a)(QA—Q) = P. b)PAQ = P. c)P=PvVvQ.

2.45. Prove that the statements P = Q and Q = R imply P = R, and that the
statements P & Q and Q & R imply P & R. (Comment: This is the justification
for using a chain of equivalences to prove an equivalence.)
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2.46. Prove that the logical expression S is equivalent to the logical expression
=S = (R A —R), and explain the relationship between this equivalence and the
method of proof by contradiction.

2.47. Let P(x) be the assertion “x is odd”, and let Q(x) be the assertion “x2 — 1 is
divisible by 8”. Determine whether the following statements are true:

a) (Vx € Z)[P(x) = Q(x)].

b) (Vx € Z)[Q(x) = P(x)].

2.48. Let P(x) be the assertion “x is odd”, and let Q(x) be the assertion “x is twice
an integer”. Determine whether the following statements are true:

a) (Vx € Z)(P(x) = Q(x)).

b) (Vx € Z)(P(x)) = (Vx € Z)(Q(x)).

2.49. Let S = {x e R: x? > x +6). Let T = {x € R: x > 3}. Determine whether
the following statements are true, and interpret these results in words:

a)T CS.

b)ScT.

2.50. Prove the following identities involving complementation of sets.
a) (AU B)° = A° N B“. (This is de Morgan’s second law.)
b)AN[(ANB)]=A-B.

AN[ANBY]=ANB.
d)(AUB)N A= B — A.

2.51. Distributive laws for set operations. Using statements about membership,
prove the statements below, where A, B, C are any sets. Use Venn diagrams to
illustrate the results and guide the proofs.

a)AUBNC)=(AUB)N(AUC).

b)AN(BUC)=(ANB)U(ANC).

2.52. Let A, B, C be sets. Provethat AN(B—-C)=(ANB)—-(ANC).

2.53. () Let A, B,C be sets. Prove that (A U B) — C must be a subset of
[A—(BUC)UI[B — (AN C)], but that equality need not hold.

2.54. (+) Consider three circles in the plane as shown below. Each bounded region
contains a token that is white on one side and black on the other. At each step, we
can either (a) flip all four tokens inside one circle, or (b) flip the tokens showing
white inside one circle to make all four tokens in that circle show black. From the
starting configuration with all tokens showing black, can we reach the indicated
configuration with all showing black except the token in the central region? (Hint:
Consider parity conditions and work backward from the desired configuration.)
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Induction

Many mathematical problems involve only integers; computers per-
form operations in terms of integer arithmetic. The natural numbers
enable us to solve problems by working one step at a time. After giving
a definition of the natural numbers as a subset of the real numbers, we
study the principle of mathematical induction. We use this fundamental
technique of proof to solve problems such as the following.

3.1. Problem. The Checkerboard Problem. Counting squares of sizes
one-by-one through eight-by-eight, an ordinary eight-by-eight checker-
board has 204 squares. How can we obtain a formula for the number of
squares of all sizes on an n-by-n checkerboard? ]

3.2. Problem. The Handshake Problem. Consider n married couples at a
party. Suppose that no person shakes hands with his or her spouse, and
the 2n — 1 people other than the host shake hands with different numbers
of people. With how many people does the hostess shake hands? ]

3.3. Problem. Sums of Consecutive Integers. Which natural numbers
are sums of consecutive smaller natural numbers? For example, 30 =
9+ 10 + 11 and 31 = 15 + 16, but 32 has no such representation. ]

3.4. Problem. The Coin-Removal Problem. Suppose that n coins are ar-
ranged in a row. We remove heads-up coins, one by one. Each time we
remove a coin we must flip the coins still present in the (at most) two po-
sitions surrounding it. For which arrangements of heads and tails can we
remove all the coins? For example, THTHT fails, but THH HT succeeds.
Using dots to denote gaps due to removed coins, we remove THHHT via
THHHT, H.THT, ..THT, .H.H, ....H, ..... [ ]

50
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THE PRINCIPLE OF INDUCTION

In Chapter 1 we described the natural numbers N in an informal
fashion as the set {1, 2, 3, ...}. We need a more precise definition in order
to prove statements about N. The idea is simple.

To generate N as a subset of R, we begin with the number 1, which is
defined to be the multiplicative identity in R. We define 2 to equal 1 + 1,
and then we define 3 to equal 2 + 1. We do not include 0 as a natural
number; some authors do. This does not change what can be proved, but
the statements or proofs may need to be modified.

We want N to be the subset of R obtained by beginning with 1 and
successively adding 1. This motivates our formal definition of N. We sel-
dom use this definition directly; instead we use the principle of induction,
which follows easily from it.

3.5. Definition. The set N of natural numbers is the intersection of all
sets S C R that have the following two properties:
a)les.
b)Ifx € S,thenx +1¢€S.

By definition, the intersection of a family of sets consists of the ele-
ments belonging to all of them. Since there is a set (R itself) satisfying
properties (a) and (b), the family has at least one member. Note also
that the intersection of all sets satisfying (a) and (b) also satisfies (a) and
(b); thus N satisfies properties (a) and (b) of Definition 3.5. Thus N is
contained in every set of real numbers satisfying (a) and (b).

Definition 3.5 yields the principle of induction, which is a method for
proving that a set S of natural numbers is all of N. It suffices to prove
that S satisfies properties (a) and (b) of Definition 3.5. This observation
underlies the principle of induction.

3.6. Theorem. (Principle of Induction) For each natural number n, let
P(n) be a mathematical statement. If properties (a) and (b) below
hold, then for each n € N the statement P(n) is true.

a) P(1) is true.
b) For k € N, if P(k) is true, then P(k + 1) is true.

Proof: Let S = {n € N: P(n)is true}. By definition, S C N. On the other
hand, (a) and (b) here imply that S satisfies (a) and (b) of Definition 3.5.
Since N is the smallest such set, N C S. Therefore S = N, and P(n) is true
for eachn € N, [ |

Induction justifies all the elementary properties of arithmetic for nat-
ural numbers. Since addition and multiplication are defined on R, and
N is a subset of R, the sum and product of two natural numbers are real
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numbers. As we expect, these are in fact natural numbers. Given a nat-
ural number n, let S, = {m € N: n + m € N}. Exercise 25 uses induction to
show for each n that S, = N. A similar proof then works for multiplication.

We also observe that natural numbers are positive. The order axioms
for R imply that 1 is positive and state that sums of positive numbers are
positive. Induction then implies that all natural numbers are positive.
(Knowing N enables us to define Z precisely. A real number x is an integer
ifx =0, x € N, or —x € N. In Appendix A we show that the arithmetic
operations on R agree with those on Z.)

A proof by induction involves two steps. Proving property (a) of The-
orem 3.6 is the basis step, and proving property (b) is the induction
step. Given statements P (1), P(2), P(3),... indexed by N, we often seek
a proof by induction when we can find a simple relationship between P (k)
and P(k + 1), since the induction step requires us to prove for each k that
P (k) implies P(k + 1). Our first application is a summation formula.

3.7. Proposition. For n ¢ N, the formulal +2+.--+n = ""‘T“) holds.

Proof: For n € N, let s, be the sum of the integers 1 through », and let
P(n) be the statement “s, = n(n +1)/2”.

Basis step: Since 1 =1-2/2, the statement P (1) is true.

Induction step: The quantity s;,1 is obtained from s; by adding & + 1.
The hypothesis that P (k) is true specifies the value of s5; and yields

s = st (+D) = B i) = k+D(5+1) = GED

Hence P (k) implies P(k + 1).
By the principle of induction, the formula holds foreveryn e N. &

The numbers s, 52, 53, . . . in Proposition 3.7 form a list indexed by N.
Every such list, including a list of statements to be proved, can be viewed
as a function defined on N. We introduce a term for such functions.

3.8. Definition. A sequence is a function whose domain is N.

We usually think of a sequence as the infinite list of its values in order.
When f: N — S, wesay that f(1), £(2), f(3),...1is a sequence of elements
of S or a sequence in S. When S = R, we speak of a sequence of real num-
bers. We often write the sequence as ay, ag, a3, ..., where a, = f(n), and
we call a, the nth term of the sequence. We refer to the entire list using
angled brackets; thus (a) is the sequence whose nth term is a,.

Writing the sequence as {a,} is common but imprecise. In this form,
n is unquantified. Also, interpreting this as {a,: n € N} names only the set
of values. For example, if a, = (—1)" for all n, then {a,: n € N} = {1, —-1}.
If b, = (—1)"*! for all n, then {a,} = {b,}, but (a) and (b) are different
sequences. Hence we write (a) or aj, ag, .. ..
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Proposition 3.7 uses induction to prove a formula for the nth term of
a sequence in terms of n; here s, = n(n + 1)/2. The sequence (s) is defined
using summation; we next introduce concise notation for summation.

3.9. Remark. Notation for summation and product. We express summa-
tion using ), a large uppercase Greek sigma. When a, b are integers, the
value of ZL‘, f() is the sum of the numbers f(i) over the integers i satis-
fyinga <i < b. Here i is the index of summation, and the formula f (i)
is the summand. In Proposition 3.7, the summand is i; in summation
notation, the resultis > ;i =n(n+1)/2forn € N.

We write 3, f(j) to sum a real-valued function f over the elements
of a set S in its domam When no subset is specified, as in Z Xj, we sum
over the entire domain. When the summand has only one symbol that can
vary, we may omit the subscript on the summation symbol, asin }_ x;.

Similar comments apply to indexed products using the uppercase
Greek pi. An important example is []'_;i = 1 x 2 x --- x n, commonly
written as n!. a

Induction works particularly well for Proposition 3.7 because the
summation for n = k + 1 is obtained from the summation for n = &
by adding one additional term. Once the hypothesis of the induction step
is invoked, we obtain the desired formula by algebraic manipulations.

3.10. Remark. Alternative argument. When still in grade school, Karl
Friedrich Gauss (1777-1855) gave a direct proofthat )\, i =n(n+1)/2.
We list two copies of the sum, one above the other:

1+ 2 4+ 8 + -~ + n
n + n-1 4+ n-2 + - + 1

For each i, the sum of the ith columnisi + (n + 1 —i) = n + 1. There are
n columns, s0 2y, ;i =n(n+1).

This argument has a “geometric” interpretation. Consider n(n + 1)
points in a grid with » columns of size n + 1. Counted by columns, there
are n(n + 1) points. We can also group the points into two disjoint subsets
with columns of sizes 1 through n. In Chapter 5 we will return to this
technique of “counting two ways”. ]

e O o o _ o

3.11. Remark. Renamingthe index. An index of summation has meaning
only within the summand; the value of } ;_, f(i) cannot depend on i. Note
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that 37, f() = 1 f(j). Both equal f(1) + f(2) +--- + f(n), where
no index appears. Tfle result must be a function of n.

This allows us to rename the index of summation when convenient.
We can also substitute to reverse the order of the summands. Below we
repeat Gauss’ argument using summations. We twice rename the index
on the second copy of the sum, replacing i by j and then jbyn +1 1.

2ii=ii+zn:j=21+2(n+l—t) Z(n+1)—n(n+1) [ ]
i=1 i=1 j=1

We write Y /_, (n + 1) = n(n + 1) because summing n terms that each
equal k is the same as multiplying k by n. A precise verification of this
uses induction (Exercise 14). Although Remark 3.10 thus indirectly uses
induction, it illustrates that alternatives may exist to proof by induction.

In this book we give careful proofs of some “obvious” statements.
Studying the proof of a seemingly obvious statement gives us confidence
in applying it. It also helps us understand the technique of proof. We may
then be able to prove less obvious statements by the same technique. Our
next proof is a model for using induction to extend statements about two
objects to analogous statements about n objects.

Understanding a proof may also reveal the limitations of the argu-
ment and the difficulties that arise in generalizing it. The “obvious” state-
ments (a) and (b) in the next proposition extend to infinite series; proving
this requires the Completeness Axiom. In contrast, the “obvious” state-
ment that the sum of n numbers is independent of the order of summation
(Exercise 42) fails for infinite series! (See Exercises 14.53-14.54.)

3.12. Proposition. Suppose that (a) and (b) are sequences of real num-

bers and that n € N.

a)IfceR,then |  cai=c) ;| ,a.

b)Ifa; <b; foralli eN,then Y | ;a; <> i ;b

c)If0 <a; < b,' foralli e N, then l_l?=1 a; < l_l?=1 b,‘.

Proof: We leave the proof of (c) as Exercise 18. For n € N, let P(n) and
Q(n) denote the conclusions in (a) and (b), respectively. We prove each
claim by induction.

a) The distributive law (Definition 1.39DL) states that multiplication
by a real number distributes over a sum of fwo real numbers: x(y + z) =
xy + xz. We use induction to prove P(n) for alln € N.

Basis step: The statement P(1) is “cay = ca;y”, which is true.

Induction step: We use both the hypothesis that P(k) is true and the
distributive law to compute

k+1 k +1

an, = Cag+1 +an, = cak+1+cZa, = c(ak+1 +za,) = cz

i=1 i=1 =1
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This computation shows that P(k) implies P(k + 1).
By the principle of induction, P (n) is true for all n.

b) In Chapter 1, we observed thata < b and ¢ < d impliesa+c < b+d.
This leads to a proof by induction that Q(n) holds for all n € N.

Basis step: Q(1) states “a; < b;”; this is true by hyPothesis.

Induction step: If Q(k) is true, then Y a; < Y i_; b, and we can
use this and our ability to sum two inequalities to compute

k+1

k+1 k k
Zai = (Zai) + a1 =< (Zbi) + b1 = Z:bi-
i=1 i=1 i=1 i=1
This computation shows that Q(k) implies Q(k + 1).
By the principle of induction, Q(n) is true for all n. ]

Proposition 3.12a allows us to extend the useful factorization
x2 — y2 = (x — y)(x + y) to nth powers.

3.13. Lemma. If x,y e Rand n € N, then
x" — yn =(x— y)(xn—l +xn—2y +..- +xyn—2 + yn—l).

Proof: Using the distributive law (Proposition 3.12a), we multiply out the

product on the right. Below we write the terms using the factor x on the

first line and the terms using the factor —y on the second line. Canceling

like terms in the “columns” yields x" — y”, which completes the proof.
x" + xn—ly + ... + x2yn—2 + xyn—l

xn—ly - ... = x2yn—2 _ xyn—l _ yn

Exercise 20 asks for this proof in summation notation. Note that
terms arising from the factor —y are shifted to combine with desired terms
arising from x. This corresponds to rewriting }"_, f(j) as 2;'.;(1, fG+1).
No summands change, and this is merely a special case of renaming the
index called shifting the index of summation.

Exercise 35 requests a proof of the next statement by induction.

3.14. Corollary. (The Geometric Sum) If ¢ € R, ¢ # 1, and »n is a nonneg-
ative integer, then Y7~ ¢' = 9;_;11.

Proof: In the formula of Lemma 3.13, we set x = g and y = 1. We obtain

g"—-1=(g—-1)(g" ' +q"%2+-.-+1). Since g # 1, we can divide both

sides by ¢ — 1 to obtain the desired formula. ]

3.15. Example. A knockout tournament. The NCAA basketball tourna-
ment starts with 64 teams. How many games are played to produce a
winner? In the first round, there are 32 games. The 32 winners play
16 games in the second round. The subsequent rounds have 8, 4, 2, 1
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games, respectively. By the Geometric Sum, the total number of games is
142+4+8+16+32=Y"2 2 =26_1=63. We can also obtain this
result by observing that every team other than the winner must lose ex-
actly one game, and hence there must be exactly 63 games. The two sides
of the equality give different methods for counting the games. |

When we use induction to prove a claim involving a parameter n € N,
we say that the proof is “by induction on »” and call n the induction
parameter. The induction step proves the conditional statement “P (k)
is true implies P (k + 1) is true”. The hypothesis of this conditional (“P (k)
is true”) is the induction hypothesis. Somewhere in the proof of the
induction step, we say “by the induction hypothesis”. If we have not used
the induction hypothesis, then we have not written a proof by induction.

With the next example, we begin to relax the formal template for
induction proofs to show the flexibility of the technique.

3.16. Proposition. If n e Nand ¢ > 2, then n < ¢".

Proof: We use induction on n. For the basis step, we have 1 < g by the
hypothesis on g, so the claim holds when n = 1. For the induction step,
suppose that the claim holds when n = k, meaning that k < g*. Using the
induction hypothesis for the step of strict inequality, we compute

k+1 < k+k = 2k < gk < q-q¢ = ¢~

Hence the claim also holds when n = k + 1, which completes the proof of
the induction step. ]

In the induction step, we show that the truth of one instance of the
desired statement implies the truth of the next instance. We have one
such proof for each natural number; starting from the basis, each provides
another value of n for which P(n) is known. Proving that P(k + 1) follows
from P (k) for a general natural number k writes all the proofs at once.

To visualize the process of induction, consider a sequence of upright
dominoes, one for each natural number. If any domino falls, then it knocks
over the next; this is the “induction step”. The principle of induction says
that if also the first domino falls (the “basis step”), then all the dominoes
fall. The proof for the first domino cannot be omitted.

3.17. Example. n = n + 1 (!2). The induction step P(k) = P(k+1)is a
conditional statement. A conditional statement fails only if the hypothe-
sis is true and the conclusion is false. From the hypothesis that k = k + 1,
we can easily derive k + 1 = k + 2. This proof of the induction step is valid,
but we have not proved that n = n + 1 for all n € N, because the basis step
is false: 1 # 2. The basis step cannot be omitted. ]

Next we illustrate a similar error. The proof of the induction step
must be valid for each value of the induction parameter where it is needed.
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3.18. Example. All people have the same sex (!?). We try to prove by
induction on n that the people in every set of n people have the same sex.
Certainly all the people in a set consisting of one person have the same
sex, so the claim holds for » = 1. Now suppose the claim holds for n = &,
andlet S = {ay, ..., ary1} be a set of k + 1 people. Deleting a; yields a set T
of k people. Deleting a, yields another set T’ of k people. By the induction
hypothesis, the people in T have the same sex, and the people in 7’ have
the same sex. Now all people in S have the same sex as a;,;.

The error is that the proof of the induction step is invalid when going
from n = 1 to n = 2. In this case, the sets T and T’ have no common
element, so we cannot use the induction hypothesis to conclude that a,
and a; have the same sex. [ |

In our next result, the statement has a natural number as a param-
eter and clearly is true when the parameter is 1. Also, the statement for
n = k + 1 involves quantities used in the statement for n = k. These
properties suggest trying induction as a technique of proof.

3.19. Proposition. If xy, ..., x, are numbers in the interval [0, 1], then
l_I(]. —x;)>1-— Zx;.
i=1 i=1

Proof: We use induction on n.
Basis step: For n = 1, the inequality is 1 — x; > 1 — x;, which is true.
Induction step: Assume the claim when n = k. Given numbers
X1, ..., Xk+1, applying the induction hypothesis to the first k£ of them yields
]'[f=1(1—x,-) >1- Zf=1 x;. Since x;y1 < 1, multiplying by 1—x;,; preserves
the inequality. This explains the first line below.

k+1 k

[Ta-x=a-sw[Ja-x2a-x(1-
i=1 i=1 i

H

Mk

x,~)
1

k k
=1—xk+1—zxi+(xk+1 in) >1-) x
i=1 i=1 i

L |
F o~

-

The next step expands the product. The term x;,1 ZLI x; 18 nonnega-
tive, since x; > 0 for all i; thus dropping it does not increase the value.
The remaining terms become the desired right side. Thus ]'[f‘;rll A-x) >

1- Zf.;l x;, which completes the induction step. ]

3.20. Corollary. If0 <a <1andn € N, then (1 —a)" > 1 — na.
Proof: Set x; = - -+ = x, = a in Proposition 3.19. [ |
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APPLICATIONS

Applications of induction occur throughout mathematics. We solve
the Checkerboard and Handshake Problems, characterize when polyno-
mials are equal, and solve a problem about cutting regions into pieces.

To solve the Checkerboard Problem, we need to sum the squares of
the first n natural numbers. Since the sum must be an integer, we obtain
as a corollary that n(n + 1)(2n + 1)/6 is an integer for each n € N.

3.21. Proposition. Foralln e N, }7_, i% = n(n + 1)(2n + 1)/6.

Proof: We use induction on n.
Basis step: For n = 1, the sum is 1, and the right sideis 1-2-3/6 = 1.
Induction step: Suppose that the formula is valid when n = k. By the
induction hypothesis, we have Zf=1 i2 = k(k + 1)(2k + 1)/6, and hence

k+1 2
S REED@AD s (k+1)[2k +k+(k+1)]
2 1 2)(2
_ (k+1)2k +67k+6 _ Gt )(k-:,' )2k +3)

The last expression is the formula when n = k + 1, proving the induction
step. By the principle of induction, the formula holds for all ». ]

Since the formula for n = k + 1 involves the factor k + 1, we factored
out ¥ + 1 when it appeared instead of multiplying out the numerator.
Keeping the goal in mind often saves time in computations.

3.22. Solution. The Checkerboard Problem. In the n-by-n checkerboard,
there is one n-by-n square, and there are n2 one-by-one squares. In gen-
eral, there are k-k = k? squares with sides oflengthn—k+1,for1 <k <n.
Hence the total number is Y ;_; k2 = n(n + 1)(2n + 1)/6, by Proposition
3.21. For n = 8, the value is 8 - 9 - 17/6 = 204. [ |

Using induction to prove a summation formula requires knowing the
formula in advance. If we can guess the formula from the first few values,
then induction may provide an easy proof, but induction will not help us
find the formula (see Exercises 28-29). In Chapter 9, we will develop
summation methods that do not require knowing the formula in advance.

Some students wonder whether the technique of proof by induction
uses what it is trying to prove. We want to prove, “for all n, P(n) is true”.
In the induction step we prove, “for all n, P(n) is true implies P(n + 1) is
true”. The statements mean different things; the second is a conditional
statement for each n. In our first few proofs by induction we used different
letters (n and k) to avoid confusion about this difference, but doing so is
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not necessary. Henceforth we often use the same letter. When convenient,
we phrase the induction step as “P(n—1) = P(n) whenevern > 1” instead
of “P(k) = P(k + 1) wheneverk € N,

We can use induction to prove that P(n) holds for {n € Z: n > ny} by
replacing P(1) by P(np) in the basis step. This is equivalent to treating
n — no + 1 as the induction parameter. Any integer-valued function of the
variables in our problem can serve as an induction parameter.

We use these remarks in determining when polynomials are equal.
The zeros of a function f are the solutions to the equation f(x) = 0.
Recall that the zero polynomial does not have a degree.

3.23. Lemma. If f is a polynomial of degree d, then a is a zero of f if and
only if f(x) = (x — a)h(x) for some polynomial / of degree d — 1.
Proof: By the definition of polynomial, we have f(x) = ¥ ,c;x', with
d a nonnegative integer and c; # 0. If the condition f(x) = (x — a)h(x)

holds, then f(a) = 0.
It remains only to assume that f(a) = 0 and obtain the factorization.
Since f(x) =co + ZLI c;ix' and f(a) =0,

d d
f@O=f@-f@=co—co+ Y alx'—d)=) a@& -d).
i=1 i=1

By Lemma 3.13, for i > 1 we have x' — a' = (x — a)h;(x), where h;(x) =
Y"j—1x'~{a’~1. Using Proposition 3.12a, factoring (x—a) from each term in

fx) =YL, ci(xi —a) yields f(x) = (x —a)h(x), where h(x) = 30 h;i(x).
Each h; has degree i — 1, and thus 4 has degreed — 1. [ |

3.24. Theorem. Every polynomial of degree d has at most d zeros.

Proof: We use induction on d. Let f be a polynomial of degree d.

Basis step: If d = 0, then f(x) = ¢o # 0 for all x, and f has no zeros.

Induction step: Consider d > 1. If f has no zero, then we are done,
so let a be a zero of f. By Lemma 3.23, we have f(x) = (x —a)h(x), where
h is a polynomial of degree d — 1.

Since nonzero numbers have nonzero product, the only zeros of f are
the zeros of x — a and the zeros of 4. Since x — a = 0 implies x = a, the
first factor has exactly one zero. Since » has degree d — 1, the induction
hypothesis implies that # has at most d — 1 zeros. We conclude that f has
at most d zeros. a

3.25. Corollary. Two real polynomials are equal if and only if their cor-
responding coefficients are equal.

Proof: Let f and g be polynomials. If their corresponding coefficients are
equal, then f(x) = g(x) for all x € R, because they have the same formula.
Thus they are the same function.
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Conversely, suppose that f(x) = g(x) forallx e R. Leth = f —g.
The difference of two polynomials is a polynomial (see Exercise 13). Since
h(x) = 0 for all x € R, Theorem 3.24 implies that » cannot have degree d
for any d > 0 and thus must be the zero polynomial. Therefore, for each i
the coefficients of x’ in f and in g are equal. [

The proof of Corollary 3.25 actually implies a stronger statement:
If polynomials f and g are equal at more than d places, where d is the
maximum of the degrees of f and g, then they are the same polynomial.

In the induction step of a proof by induction, we consider an arbitrary
instance of the hypotheses for one value of the parameter, and we find an
instance for a smaller value of the parameter in order to apply the induc-
tion hypothesis. In the proof of Theorem 3.24, we factored out x — a to
obtain a polynomial of smaller degree to which we could apply the induc-
tion hypothesis. Finding an appropriate smaller problem may take some
effort. In the next example, the smaller instance emerges by stripping
away pieces of the larger instance in an interesting way.

3.26. Solution. The Handshake Problem. Let a handshake party be a
party with n married couples where no spouses shake hands with each
other and the 2n — 1 people other than the host shake hands with dif-
ferent numbers of people. We use induction on n to prove that in every
handshake party, the hostess shakes hands with exactly n — 1 people.

If no one shakes with his or her spouse, then each person shakes with
between 0 and 2n — 2 people. Since the 2n — 1 numbers are distinct, they
must be 0 through 2n — 2. The figure below illustrates for » € {1, 2, 3} the
situation that is forced; each pair of encircled points indicates a married
couple (host and hostess are rightmost), and two points are connected by
a curve if and only if those two people shook hands.

) W

Basis step: If n = 1, then the hostess shakes with 0 (which equals
n — 1), because the host and hostess don’t shake.

Induction step: Suppose that n > 1. The induction hypothesis states
that the claim holds for a handshake party with n — 1 couples. Let P
denote the person (other than the host) who shakes with i people. Since
Py,_2 shakes with all but one person, Py must be the person omitted.
Hence P, is the spouse of Pj,_2. Furthermore, this married couple is
not the host and hostess, since S = {Py, Py,—2} does not include the host.
Everyone not in S shakes with exactly one person in S, namely Ps,_s. If we
delete S to obtain a smaller party, then we have n — 1 couples remaining
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(including the host and hostess), no person shakes with a spouse, and each
person shakes with one fewer person than in the full party. Hence in the
smaller party the people other than the host shake hands with different
numbers of people.

By deleting the set S, we obtain a handshake party with n — 1 couples
(deleting the leftmost couple in the picture for n = 3 yields the picture
for n = 2). We can thus apply the induction hypothesis to conclude that,
outside of the couple §, the hostess shakes with n — 2 people. Since she
also shakes with Pq,_o, in the full party she shakes with n — 1 people. R

In this proof, we cannot discard just any married couple to obtain
the smaller party. We must find a couple S such that everyone outside S
shakes with exactly one person in S. Only then can we apply the induction
hypothesis to the smaller party, because only then will we know that it
satisfies the hypothesis about distinct numbers of handshakes.

A similar problem arises if we start with a handshake party of n cou-
ples where the hostess shakes with n — 1 people and add a couple S in
which one person shakes with everyone else and the other person shakes
with no one. This produces a handshake party of n + 1 couples where the
hostess shakes with n people. Unfortunately, it does not prove the induc-
tion step, because we have not shown that every handshake party of n + 1
couples arises in this way.

We avoid this difficulty by proving that in any party of the larger size,
Py must be the spouse of the person shaking the most. The induction
step must consider every instance for the larger value of the induction
parameter (see discussion after Application 11.46).

Sometimes we must verify more than P(1) in the basis step. If we
need both P(n — 1) and P(n) to prove P(n + 1), then we must verify both
P(1) and P(2) to get started. The reason is that since there is no P(0),
the proof of the induction step does not apply to prove P(2). This occurs
in the next example and in many proofs using recurrence relations (see
Exercises 55-57 and Chapter 12).

3.27. Solution. The L-Tiling Problem. A child has a large number of L-
shaped tiles as illustrated on the left below. Is it possible to form the large
similar region on the right with non-overlapping copies of this tile?

n

2 2n
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Let the large region be R, and the small region be L. A partition of a
region into copies of L is an L-tiling. We want to prove for n € N that R,
has an L-tiling. Since R) is a copy of L itself, R; has an L-tiling.

In seeking a proof by induction, we can find a copy of R,_; inside R,
by removing a strip of unit width along the top, left, bottom, and right
edges. This does not help. The induction hypothesis would tell us that
R,_1 can be tiled, but when n > 3 we cannot extend this to a tiling of R,
because the outer strip has no L-tiling.

To fix this flaw, we use an outer strip of width 2 and obtain an L-tiling
of R, from an L-tiling of R,_5. Since R; has an L-tiling, this completes the
proof for odd n, but to handle the even cases we also must treat R, in the
basis. Below we explicitly tile Ry and illustrate that every 2 by 3k rectan-
gle has an L-tiling. (The decomposition of R, suggests a simple inductive
proof that R, has an L-tiling whenever n is a power of 2—Exercise 58.)

Eﬂ e le ] L]

For the induction step, consider R,, where n > 3. It suffices to cut R,
into regions that we already know have L-tilings. The induction hypoth-
esis provides an L-tiling of the inner region R,_s. To complete the proof,
it suffices to tile the outer strip. For this we use copies of Ry and copies of
2 by 3k rectangles, which we have already shown have L-tilings.

We tile the outer band in one of three ways, depending on whether n,
n — 1, or n — 2 is a multiple of 3. To prove that the decomposition works
in each case, we need only verify that the length of the long side of each
rectangle used is a multiple of 3. For clarity in the pictures, we list only
these lengths; the short sides all equal 2. The three cases occur when
n > 3,n > 4, and n > 5, respectively, so the lengths of the rectangles are
nonnegative multiples of 3. Verifying this completes the induction step. B

2(n|—R)

2(n|—-PB) 2(n|—H)
R,_2 R,_2 nl—H4 R._2
|| n - || -
Ry T 2(n-13) R T2n—4) ] Re R T 2(n-2)

n divisible by 3 n — 1 divisible by 3 n — 2 divisible by 3
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STRONG INDUCTION

In this section we present several variations of induction. They are
useful alternative phrasings of the same idea.

Sometimes a proof of P (k) in the induction step needs the hypothesis
that P(i) is true for every value of i before k. By assuming more in the
induction hypothesis, we make the condition statement in the induction
step weaker. Nevertheless, this weaker implication suffices to complete
the proof, and so we call the method strong induction.

3.28. Theorem. (Strong Induction Principle) Let {P(n): n € N} be a se-
quence of mathematical statements. If properties (a) and (b) below
hold, then for every n € N, P(n) is true.

a) P(1) is true.
b) For k > 2, if P(i) is true for all i < k, then P (k) is true.

Proof: For n € N, let Q(n) be the statement that P(i) is true for all i
with 1 < < n. We prove by induction on n that all Q(n) are true, which
implies that all P(n) are true.

Basis step: By (a), Q(1) is true.

Induction step: For k > 1, the hypothesis that Q(k — 1) is true is the
statement that P(i) is true for i < k. Thus (b) implies that P (k) is true.
With the truth of Q(k — 1), this yields Q(k). The principle of induction
now implies that all Q(n) are true. [ ]

Proving Q(n) by ordinary induction on » is equivalent to proving P(n)
by strong induction on n. Again proving (a) is the basis step and proving
(b) is the induction step. We can use strong induction to prove a state-
ment for all nonnegative integers by starting with P(0) in the basis step.

3.29. Solution. The Coin-removal Problem. Let a string be a row of coins
without gaps and without other coins beyond the ends. We write a string
as a list of Hs and Ts. When we remove an H, we leave a gap (marked
by a dot), and we flip all of the (at most two) coins next to it that remain.
Thus HHT becomes T . H when we remove the H in the middle, and then
we get T .. when we remove the new H. Removing a coin from a string
leaves two strings except when we remove the end.

We begin with a string of length n. Examination of examples suggests
that we can empty a string (remove all its coins) if and only if it has an
odd number of Hs. We prove this by strong induction on ».

Basis step: We can empty a string of length 1 if and only if it is H.

Induction step: Consider a string S of length &, for k > 1. The induc-
tion hypothesis tells us that shorter strings can be emptied if and only if
they have odd weight, where the weight of a string is the number of Hs.

Suppose first that S has odd weight. Let X be its leftmost H. Remove
X and flip its neighbor(s). The portion before X now is empty or has
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one H (at its right end). The portion after X has even weight, but if it
is nonempty we flip its first element to obtain odd weight. Thus each
remaining string is shorter than § and has odd weight. By the induction
hypothesis, each remaining string can be emptied, so S can be emptied.
If S has even weight, we show that removing any H leaves a shorter
nonempty string with even weight. For each H in S, the number of other
Hs is odd. Thus there is an even number of them to one side and an odd
number to the other side. The side with an odd number is nonempty, and
flipping its member next to the H being removed gives it even weight.
Thus for each H we might remove, we leave a shorter nonempty string of
even weight. By the induction hypothesis, that string cannot be emptied,

so S cannot be emptied. |
Good Bad
TTTHHTTH TTHHTHTH
TTH .TTTH TTHHH.HH

In Solution 3.29, removing a coin can yield much shorter strings. We
need the hypothesis for all smaller lengths, so we use strong induction.

3.30. Proposition. (Well-Ordering Property) Every nonempty subset of
N has a least element.

Proof: For n € N, let P(n) be the statement that every subset of N con-
taining n has a least element. Proving these statements proves the claim,
because every nonempty § C N contains some n, and then P(n) implies
that S has a least element. We prove P(n) by strong induction on .

Basis step: Since 1 is the least natural number, every subset contain-
ing 1 has a least element, and P(1) is true.

Induction step: Suppose that P(i) is true for alli < k. Let S be a
subset of N containing k. If S has no member less than k, then & is its
least element. Otherwise, S contains an element i less than &, and P(i)
implies that § has a least element. Thus P (k) is true. [ ]

Exercise 64 requests a proof of the ordinary principle of induction
from the well-ordering property, thus verifying that our three versions of
induction are equivalent. We next describe yet another.

Suppose that S C N, but that S # N. By the well-ordering property,
S¢ has a least element. Thus when P(n) fails for some n € N, there is a
least n where it fails. This yields another approach to induction, called
the method of descent. We can prove P(n) for all n € N by proving
that there is no least n where P(n) fails. To do this, we suppose that
P(n) fails for some n and show that P (k) must fail for some k less than
n. The existence of k implies that n > 1, and thus we have proved the
contrapositive of property (b) from Theorem 3.28.
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We give two proofs to illustrate the method of descent.

3.31. Theorem. /2 is irrational.

Proof: If /2 is rational, then we may write +/2 = m/n for some m,n € N.
We obtain another fraction equal to +/2 with smaller positive denomina-
tor; the method of descent then implies that /2 has no representation as
a quotient of natural numbers.
Since 1 < +/2 <2, wehaven <m < 2n. Thus 0 <m —n < n. Using
also 2n% = m?2, the computation below shows that (2n —m)/(m — n) works.
2n —m _ n(2n —m) _ 2n2 — mn _ m? —mn _m(m—n) m
n

m—n  nm—n) nm-n) nm-—n) nm-—n)

3.32. Proposition. Every natural number n can be expressed in exactly
one way as the product of an odd number and a power of 2.

Proof: If the claim fails, then some least n does not have a unique such
expression. If n is odd, then » is not divisible by 2, so 1- n is such an
expression and the only one. If n is even, then we consider n/2. Each such
expression for n/2 produces one for n by adjusting the power of 2, and vice
versa. Thus if n is a counterexample, then n/2 is also a counterexample.
We have proved that there is no least counterexample. ]

Alternatively, we can obtain Proposition 3.32 from Proposition 3.16.
Since n < 2", there is a largest power of 2 that divides n, call it 2'. Dividing
n by a smaller power of 2 leaves an even number. Thus the only expression
for n as a power of 2 times an odd number is 2' - (n/2').

Using Proposition 3.32, we determine which natural numbers can be
written as a sum of consecutive smaller natural numbers.

3.33. Example. Sums of Consecutive Positive Integers. For r > 1, we can
write the odd number n = 2r + 1 as r + (r + 1). When r is twice an odd
number 2r + 1, we canthenwriten = (r — 1) + (r) + (r + 1) + (r + 2). This
works whenever r — 1 > 1 and fails when n = 2. When n = 6, we have
r —1 = 0 and can drop this O to obtain 6 =1+ 2 + 3.

When n = 4(2r + 1), we can write

n=r-3)+r-2)+r-D+EN+r+D+C+2)+r+3)+F+4).

This works whenever r —3 > 1. When r — 3 = —1, we can drop the first
three terms (—1)+(0) + (1) to write n as a sum of five consecutive integers.
When r — 3 = 0, we drop the 0.

This suggests the general procedure used in the proof below. We il-
lustrate it for 11, 22, 44, 88, which are powers of 2 times the odd number
11 = 2.5+ 1. For 2'11, we use 2' pairs of numbers summing to 11.
Thuswe write 11 =54+6,22=4+54+6+47,44=2+3+---+ 9, and
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88=-24+(-1)4+0+1+4+2+-.-+4+13. We cancel the first five terms in
the last expression to obtain88 =3 +4+--. + 13. ]

3.34. Solution. Sums of Consecutive Positive Integers. We prove that a
natural number 7 is a sum of consecutive smaller natural numbers if and
only if n is not a power of 2.

| [ T | |

r+1-2) + -~ + r + (r+) + - + (r+2)

If n is not a power of 2, then n = 2'(2r + 1) for some integers ¢z > 0 and
r > 0, by Proposition 3.32. Consider the 2' numbers ending at r and the
2! numbers starting at r + 1. Grouping these symmetrically around the
middle yields 2 pairs, each with sum 2r + 1, so the overall sum is n. When
r +1—2' <0, the numbers are not all positive. The two numbers in the
middle are positive, so the number of positive terms exceeds the number
of nonpositive terms by at least 2. In this case, the numbers r +1 — 2'
through —(r + 1 — 2') have sum 0, and we delete them to express n as the
sum of (at least two) consecutive natural numbers.

To prove the converse, suppose that »n is the sum of p consecutive
natural numbers starting with m. We will write n as an integer times
an odd number larger than 1. When p = 2, n is odd. Otherwise, we use

Proposition 3.7 to evaluate Zf;ol i and obtain

p-1 p—-1
_ N . pip—1) _ pCm+p-1)
n—;(m+t)—mp+§t—mp+ 3 = 5 .
Whether p is odd or even, exactly one of {p, 2m + p — 1} is even and

both exceed 2. Hence n = "—‘3"%@ expresses n as the product of two

integers, at least one of which is odd and larger than 1. We conclude that
n is not a power of 2. (This expression for n shows that here we have the
same answer as in Exercise 1.47.) [ ]

HOW TO APPROACH PROBLEMS

In approaching the problems in this chapter, we consider how and
when to use induction and how to deal with difficulties that may arise.

1) As in Chapter 1, it helps to express the desired conclusion in terms
of known facts, especially when proving an induction step.
2) Not all statements involving natural numbers require induction.
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3) Induction has many variations. When the proof of the induction
step uses r earlier instances of the problem, r instances are needed in
the basis. When the induction step needs arbitrary earlier instances, use
strong induction.

Using induction.

Induction proofs of statements like the summation formulas in Exer-
cises 14-17 should become routine. To prove such a formula by induction,
verify that it holds for the first instance, and then for the induction step
verify that each instance implies the next. This often amounts to little
more than grouping the sum as the previous instance plus the new term,
applying the induction hypothesis to the previous instance, and manipu-
lating the resulting expression to obtain the desired formula in the new
instance. Proposition 3.7 and Proposition 3.21 exemplify this.

Induction also applies to many statements other than summation for-
mulas. Often one must explore a few small values of the parameter to
find a pattern. Eventually a uniform way of using the statement for one
value of the parameter to prove the next statement emerges. Describing
and explaining that process for the general case becomes the proof of the
induction step. Consider Solution 3.26 in this light.

What happens when we try to give an inductive proof of a statement
that isn’t always true? If the argument is valid only when the parameter
is sufficiently large, then we may be able to prove that the statement holds
for large n by finding an appropriate basis step.

3.35. Example. Suppose we try to prove that n® + 20 > n? + 15n for all
n € N. Setting n = 1 yields 21 > 16, so the inequality holds when n = 1.
Suppose it holds when n = k; we want (k + 1)3 +20 > (k+1)2+ 15(k + 1).
Using the hypothesis k3 + 20 > k2 + 15k, we compute

k+1)24+20 = (K +3k2+3k+1)+20 = (3k® + 3k + 1) + (k% + 20)
> Bk2+3k+ 1) + (k% + 15k) = (k® + 2k + 1) + (15k + 15) + 2% + k — 15.

To prove that the final expression is at least (k + 1)2 + 15(k + 1), we need
only verify that k(2k + 1) > 15. Unfortunately, this requires k > 4.

We can salvage something. When n = 4, we have n% + 20 = 84 >
76 = n? + 15n, so we can use n = 4 as a basis step. Now we only need the
induction step to be valid when k > 4. If k > 4, then k(2k+1) > 4.9 > 15,
and we have proved the inequality for natural numbers at least 4.

Our argument for the induction step is not valid when k = 1, so we
cannot use it to go from n = 1 to n = 2. In fact, the inequality n3 + 20 >
n? + 15n fails when 7 is 2 or 3. [

3.36. Example. For n € N, when does 3" > n* hold? The statement is
true for n = 1, but it fails for n = 2 and n = 3 by inspection. Nevertheless,
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we ask when 3" > n* implies 3"*! > (n + 1)*. The hypothesis yields
3"t = 3.3" > 3n*, and thus we want 3n* > (n + 1)4. Solving for n yields
n > z— = 3.16, so the implication holds whenever n > 4.

Since 3% = 9%, we have 3% > 8% Our proof of the induction step is
valid when n > 4, so using n = 8 as the basis step yields a proof by induc-
tion that 3" > n* when n > 8. The proof of the induction step must break
down for small n, because the inequality fails there. Checking the small
values completes the answer; the inequality holds forn =1andrn >8. B

n: 1 2 3 4 5 6 7 8
3» 3 9 27 81 243 729 2187 6561
n* 1 16 81 256 625 1296 2401 4096

To induct or not to induct.
Some formulas follow easily from known formulas.

3.37. Example. For x # 1 and n € N, we evaluate the sum b = Y/, x".
The key idea is to recognize that the sum is much like one we already
know: a = Y_7_, x'. The summation for b lacks the first two terms. Writ-
ing what we want to know in terms of what we already know yields
xn+1 -1
b=a-1-x=—m——-1-1x. [ ]
x—1

Some of the exercises need proofs by induction; others apply state-
ments that we have proved by induction, such as };_,i = n(n + 1)/2.
Most can be done in several ways. For example, calculus can be used to
analyze numerical inequalities like 3" > n* in Example 3.36. In Remark
3.10, we quickly evaluated the sum ) ;_, i by grouping two copies of the
summands in a clever way. See also Exercise 39.

In the next example, we give two proofs. The inductive proof illus-
trates the technique of manipulating a desired inequality (without chang-
ing its validity) to reduce the inequality to a known true statement. The
second proof uses substitution.

3.38. Example. If n € Nand x, y > 0, then (332)" < 8",

Our first proof uses induction on n. When n = 1, the claim is an
equality. For the induction step, we assume that the inequality holds for
all x, y when n = k. The desired expression has (%)"+1 on the left side.
The induction hypothesis tells us something about (332)*. Writing what
we have in terms of what we know yields

(x+y)"+1 _ (x+y)"x+y - (xk+y")x+y _oxtt gyl by oyt
2 - 2 2 - 2 2 4 )

To complete the proof by this approach, we need to know that the
+1 +1 . . .
last expression is at most "k—‘;yi— Multiplying by 4 and collecting terms
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on one side reduces this desired inequality to the equivalent inequality
0 < x**1 — xky 4 y¥+t1 _ ykx Here we can factor the right side to reduce
the needed statement to 0 < (x — y)(x* — y*).

It is easy to prove this last inequality. The function that maps x to
x¥ is increasing. Thus the factors (x — y) and (x* — y*) always have the
same sign, and the inequality holds. Since the steps of our reduction are
reversible, this completes the proof.

Alternative proof (substitution). We prove ( %X)" < ’"—*21 directly. To
simplify the left side, we give ﬁi a new name a; this suggests also giv-
ing 52 a new name b. We may assume that x > y; this keeps a and b
nonnegative. The substitution yields the new desired inequality

n@tb)+@-b)

< 2 .
When we multiply out the numerator, we obtain a polynomial in a and
b. The terms with negative coefficients are canceled by corresponding
terms with positive coefficents. The right side of the inequality is left
with a"/2 + a" /2 plus only terms with positive coefficients. Since a and b
are nonnegative, the desired inequality thus holds. ]

When do we seek a proof by induction? This is a hard question.
Although induction is a possible strategy for proving that a formula in-
volving n holds for every natural number n, sometimes it fails. There
may be no nice way to write the formula for » + 1 in terms of the for-
mula for n, and a proof by induction may be impossible or require difficult
calculations. When this happens, try another approach.

For example, consider the sum Y ;_,n'. The parameter n appears
both in the summand and as an index of notation. Replacing n by n + 1 in
the formula leads to a mess. One needs another approach to verify that
the sum is =—= 1 (see Exercise 37).

Those Who have studied calculus may also consider the integral
: " cos2'(6) d6. Onme could evaluate this explicitly for small values of n,
try to guess a pattern for the formula, and then seek a proof by induction.
Guessing the answer might be hard; it is 27 (gf’"f)g Even after guessing the
correct formula, it is not clear how to obtain one integral from the previ-
ous and apply the induction hypothesis to prove the induction step. Ideas
from Chapters 4 and 18 permit a simultaneous evaluation of this integral
for all n by the same calculation (Exercise 18.15), without induction.

Strong Induction.
Strong induction applies when we consider arbitrarily large steps.

3.39. Example. The game of Nim (special case). Two players move alter-
nately in a game that starts with two equal-sized piles of coins. A move
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consists of removing some positive number of coins from one pile. The
winner is the player who removes the last coin.

Using strong induction, we can show easily that Player 2 wins this
game. Certainly this holds when both piles have one coin, as Player 1
takes one and Player 2 takes the other. This proves the basis step.

For the induction step, suppose we start with two piles of size n. If
the Player 1 takes a complete pile, then Player 2 takes the other pile and
wins. Otherwise, Player 1 takes j coins from one pile, for some j. Player
2 responds by taking j coins from the other pile. The remainder of the
game is equivalent to a game with n — j coins in each pile and Player 1
moving first. The induction hypothesis tells us that Player 2 wins this
game. This completes the proof. |

Example 3.39 used strong induction in that j may be any number
from 1 to n — 1, leaving an arbitrarily smaller game after the first round.

Strong and ordinary induction can be closely related. When a state-
ment about n involves 2¢, it may be possible to prove it by strong induction
on n or by ordinary induction on k. Exercise 60 considers an example.

In Solution 3.27, the proof of the statement P(n) in the induction step
uses the statement P (n —2). When we need the previous r instances of the
statement to prove the next statement, we must verify r instances in the
basis step to get started. This is slightly different from strong induction.

3.40. Example. Let (a) be a sequence satisfying a; = 2, az = 8, and
a, = 4(a,_y — a,_g) for n > 3. We seek a formula for a,.

Given no formula to prove, we may try to guess one. The definition
of (a) tells us that ag = 24, a4 = 64, a5 = 160. Note that a, = n2" fits all
the data so far. Having guessed this as a possible formula for a,, we can
try to use induction to prove it.

Whenn =1, wehavea; =2 =1-2!. Whenn =2, wehaveay, =8 =
2 - 22, In both cases, the formula is correct.

In the induction step, we want to show that the desired formula is
correct when n > 3. The induction hypothesis is the hypothesis that the
formula is correct for the instances n — 1 and n — 2. Using our expression
for a, in terms of earlier terms, we thus have

an = 4(@n-1 — an_2) = 4[(n — 1)2""1 — (n — 2)2"~2] = (2n — 2)2" — (n — 2)2" = n2".

The validity of the formula for a, follows from its validity for a,_; and
a,_2, which completes the proof. ]

In this proof, we must verify the formula forn = 1 andn = 2 in
the basis step, because otherwise the induction step would prove nothing
for n = 3. Also, although we generated additional values to guess the
formula, they do not appear in the proof. This also applies to extra small
instances we may explore to understand the inductive argument.
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Induction works well to prove statements about such sequences (see
Exercises 55-57), but it will not discover a formula for the terms. Methods
for obtaining such formulas when not given appear in Chapter 12.

The method of descent is particularly useful when the statement to be
proved is a statement of nonexistence. A smallest counterexample is an
actual solution to the problem we are trying to show has no solutions, and
then we work with this solution to obtain a smaller solution (see Theorem
3.31). Fermat named the method of descent and used it to prove that the
equation x* + y* = z* has no solution for positive integers x, y, z.

Communicating mathematics.

Finally, we comment again on the proper presentation of an argu-
ment. In a proof by induction, the induction step requires particular care.

When proving P(n) for all n € N by induction, it can help to start by
stating what is being proved. The induction step proves for all ¥ € N that
P (k) implies P(k + 1). This can be phrased as “Assume that P(n) is true
when n = k. We prove that then also P(n) is true when n = k + 1.” Some
students write “We prove that n = &k implies n = k + 1”; this is nonsense.

In the induction step as phrased above, P(k) is known and P(k + 1)
is to be proved. One must not write a proof deriving P (k) from P(k + 1).
When P(n) is a formula involving n, this error occurs if the proof begins
with the formula P(k + 1) and manipulates it without words until P (k)
is obtained. When the manipulations are reversible, the proof can be
corrected by arguing that the steps are reversible and that therefore the
desired formula P(k + 1) has been reduced to the hypothesis P (k).

It may be more efficient to manipulate the assumed formula P (k) to
obtain P(k + 1), but the reduction method may help discover the proof.
A good compromise is to start with one side of the formula P(k + 1) and
manipulate it, invoking the truth of P (k) at an appropriate point, to reach
the other side (see Propositions 3.7, 3.12, 3.19, and 3.21).

EXERCISES

Words like “determine”, “obtain”, “construct”, or “show” request proof.

3.1. (-) Give a sentence P(n) depending on a natural number n, such that
P(1), P(2),..., P(99) are all true but P(100) is false. Make your sentence as
simple as possible.

3.2, (—) Let P(n) be a mathematical statement depending on a natural number n.
Suppose that P(1) is false. Suppose also that whenever P(n) is false, also P(n+1)
is false. Show that P (k) is false for all k € N. (There is a one-line proof!)

3.3. (-) Let P(n) be a mathematical statement depending on an integer n. Sup-
pose that P(0) is true. Suppose also that whenever P(n) is true, also both P(n + 1)
and P(n — 1) are true. Show that P(k) is true for all k € Z.
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3.4. (-) Let P(n) be a mathematical statement depending on an integer n. Sup-
pose that P(0) is true. Suppose also that whenever P(n) is true, at least one of
P(n +1) and P(n — 1) is true. For which n € Z must P(n) be true?

In Exercises 5-9, determine whether the statement is true or false. If true,
provide a proof. If false, provide a counterexample.

3.5. ForneN, Z:=l(2k +1)=n%2+2n.

3.6. If P(2n)istrueforalln € N, and P(n) = P(n + 1) forall n € N, then P(n) is
true for alln € N.

38.7. Forne N, 2n — 8 <n? —8n +17.
3.8. ForneN,2n—18 <n?—8n+8.
3.9. Forne N, ’—';‘Inglzs <1

3.10. (—) Suppose that » € N and that x;, ..., x2,.1 are odd integers. Prove that
Z?:l x; is odd and that ]_[,2:1 x; is odd.

3.11. (-) Use induction on » to prove that a set of n elements has 2" subsets.
3.12. (-) Given x € R and n € N, use induction to prove that } " x = nx.
3.13. (-) Explain why the sum and difference of two polynomials are polynomials.

3.14. (—) For each sum below, write it in summation notation and find and prove
a formula in terms of n.
a)3+T7+11+---+@4n-1).
b)1+54+9+---+@n+1).
)—-1+2-3+4—.--—(2n—-1)+2n.
d)1-3+5-74+---+(@n—-3)—4n-1).

3.15. For n € N, prove that ) ,_ (—1)'i? = (—1)" 22D,

8.16. Forn € N, prove that ) ;_, i® = (212,

3.17. Forn € N, prove that };_ i(i + 1) = 2+l

3.18. Given 0 < a; < b; for alli € N, prove that [["_, a; <[]_, b:.
i=1 i=1

1

8.19. For k € N, prove that x < y implies x%*-! < y2-1,

3.20. Write out the proof of Lemma 3.13 using summation notation.
3.21. Multiply out (}_/_, x) ? writing the result in summation notation.

3.22. (1) For n € N, prove that |37 a| < 3.7, lail.

3.23. Let a be a nonzero real number. Find the flaw in the following “proof” that
a" = 1 for every nonnegative integer n.
“Basis step: a° = 1. Induction step: a"t! =qa" -a"/a" 1=1.1/1=1"
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3.24. Let m be a natural number. Find the flaw in the statement below. Explain
why the statement is not valid, and change one symbol to correct it.
“If T is a set of natural numbers such that 1) m € T and 2) n € T implies
n+l e T,thenT ={neN: n>m}”

3.25. Prove that the sum and product of natural numbers are natural numbers.
(Hint: See the discussion after Theorem 3.6.)

3.26. Let (a) be a sequence such thata; = 1and a,41 = a, +3n(n +1) forn € N.
Prove thata, =n® —n+ 1forn e N.

3.27. Forn € N, prove that Z::l m = —3""—-4-1

3.28. For n € N, find and prove a formula for ) 7 , 1

i=1 iG+1)°
3.29. For n € N, find and prove a formula for ) ]_,(2i — 1).
3.30. For n € N, prove that }__ (2i — 1)? = 2Z2=0@n+])
3.31. Forn € N and n > 2, find and prove a formula for [T;_,(1 — }).

8.82. Forn € Nand n > 2, find and prove a formula for [T/_,(1 — =),

3.33. Obtain a simple formula for the number of closed intervals with integer
endpoints contained in the interval (1, n] (including one-point intervals).

3.34. Consider a set of 20 boxes, each containing 20 balls. Suppose every ball
weighs one pound, except that the balls in one box are all one ounce too heavy or
all one ounce too light. A precise scale is available that can weigh to the nearest
ounce (not a balance scale). By selecting some balls to place on the scale, explain
how to determine in one weighing which is the defective box and whether its balls
are too heavy or too light.

3.35. Let g be a real number other than 1. Use induction on n to prove that
Yied =@ —D/@q-D.

3.36. Obtain a polynomial f such that ) ;_, x' = f(x)/(x — 1).

3.37. For n € N, obtain a formula for ) ;_ »’. (Hint: Do not use induction.)

3.38. Starting with 0, two players alternately add 1, 2, or 3 to a single running
total. The player who first brings the total to at least 1000 wins. Prove that the
second player has a strategy to win against any strategy for the first player. (Hint:
Use induction to prove a more general statement.)

3.39. (!) Let S, be the hexagonal arrangement consisting of » rings of dots, as
illustrated below for n € {1, 2, 3}. Let a, be the number of dots in S,. Find formulas
for a, and ) ;_, a; (simplify all sums).
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8.40. Consider a cube of size n formed by assembling n® cubes of size 1. Prove that
the number of cubes of all positive integer sizes in a cube of size  is %nz(n +1)2

3.41. () Let f: R —» Rbe afunction suchthat f(x+y) = f(x)+ f(y)forx,y € R,
a) Prove that f(0) =0.
b) Prove that f(n) =nf(1) foralln € N.

3.42. Addition is defined as a function from R x R to R; it sums pairs of numbers.
Use induction on n to prove that the sum of » numbers is independent of the order
in which the numbers are added into the total. This justifies the use of summation
notation for a sum of » numbers.

3.43. (!) Suppose f: R — R satisfies f(xy) = xf(y) + yf(x) for all x, y € R. Prove
that f(1) = 0 and that f(u") = nu""1f(u) foralln € Nand u € R.

3.44. (!) Determine the set of natural numbers that can be expressed as the sum
of some nonnegative number of 3s and some nonnegative number of 10s.

3.45. (!) Determine the set of natural numbers n such that every sum of n consec-
utive natural numbers is divisible by #.

3.46. (—) Let f(n) = n® — 8n + 18. For which n € Nis f(n) > f(n — 1) true?
3.47. Prove that 5" + 5 < 5"*! for alln € N.

3.48. (!) Determine the set of positive real numbers x such that the inequality
x" 4+ x < x"t holds for all n € N.

3.49. For each of the following inequalities, determine the set of natural numbers
n for which it holds.

a) 3" > 2+l ¢) 3"l > nt,

b) 2" > (n + 1)%. dnd+n+1)° > (n+2)3

3.50. Let f be a function mapping Z into the set of positive real numbers. Suppose
that f(1) = 1 and that f satisfies f(x — y) = f(x)/f(y) for x, y € Z. Find f(n) for
n € N and prove your formula by induction. Repeat for f(1) =c.

3.51. Construct a cubic polynomial such that the set of natural numbers where
its value is at least 3is {1} U {n € N: n > 5}.

3.52. Partial fraction expansion. Use Corollary 3.25 to obtain constants A, B,r, s

such that 71— = A + L forallx e R~ {r,s}.

3.53. (!) Suppose that f(x) is a polynomial of degree n and that the values
f©), fQ),...., f(n) are known. Describe a procedure for determining f, and jus-
tify that it works. (Hint: For n > 1, recall from the proof of Theorem 3.24 that
f(x) = f(n) = (x — n)h(x), where h is a polynomial of degree n — 1.)

3.54. (!) Suppose that F is defined by f(x) = )__, cix’ and has zeros o, ..., a,
such that &; 3 0 for all i. Derive a formula for }__ (1/;) in terms of co, ..., ¢a.
(Hint: First show that f(x) = ¢ [](x — @;); see Lemma 3.23. Comment: A more
general result is proved in Exercise 17.40.)

3.55. Let (a) be a sequence satisfying a; = 1, a; = 8, and a, = a,-1 + 2a,-2 for
n > 3. Prove thata, =3-2""' + 2(-1)" forn ¢ N,
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3.56. Let (a) be a sequence satisfying a, = 2a,_1 + 34, forn > 3.
a) Given that ay, a; are odd, prove that a, is odd for n € N.
b) Given that a; = a; = 1, prove thata, = 3(3""! — (-1)") forn € N.

3.57. Let (a) be a sequence satisfying a; = a; = 1 and a, = 1(as-1 + 2/a,_») for
n>2 Provethatl <a, <2forneN.

3.68. (1) L-tilings. Prove that R has an L-tiling in the following situations.
a) R is a 2* by 2* chessboard with one corner square removed.
b) R is a 2% by 2* chessboard with any single square removed.

3.59. (+) Determine which rectangles have L-tilings.

3.60. Consider a row of n boxes, each containing a number, such that the number
in the ith box is the ith smallest number. Given a number x, one would like to
know whether x appears in one of the boxes. Iteratively, one can look at the num-
ber in a box and then decide what box to look in next.

a)Prove that when n < 2%, thereis a strategy that always determines whether
x is present by looking in at most k boxes, no matter what x is or what numbers
are in the boxes.

b) Prove that when n > 2, there is no strategy that will always answer the
question by looking in at most k boxes.

3.61. (—) Using the rules of Problem 3.4, remove the coinsin HTHTHHTHHH.
How many steps does it take?

3.62. (!) The December 31 Game. Two players alternately name dates. On each
move, a player can increase the month or the day of the month but not both.
The starting position is January 1, and the player who names December 31 wins.
According to the rules, the first player can start by naming some day in January
after the first or the first of some month after January. For example, (Jan. 5,
Mar. 5, Mar. 15, Apr. 15, Apr. 25, Nov. 25, Nov. 30, Dec. 30, Dec. 31) is an instance
of the game won by the first player. Derive a winning strategy for the first player.
(Hint: Use strong induction to describe the “winning dates”.)

3.63. Beginning at the origin, two players alternately move a token in the plane.
When the token is at (x, y), the player chooses a natural number » and moves
either to (x + n, y) or to (x, y + 5n). Show that the second player can arrange to
always return to the line y = 5x.

3.64. Derive the principle of induction from the Well-Ordering Property for N.

3.65. (!) In the village of Perfect Reasoning, each employer has an apprentice. At
least one apprentice is a thief. To remedy this without embarrassment, the mayor
proclaims the following true statements: "At least one apprentice in this town is
a thief. Every thief is known to be a thief by everyone except his or her employer,
and all employers reason perfectly. If n days from now you have concluded that
your apprentice is a thief, you will come to the village square at noon that day to
denounce your apprentice.” The villagers gather at noon every day thereafter. If
in fact k > 1 of the apprentices are thieves, when will they be denounced, and how
do their employers reason? (Hint: Study small values of &, and use induction to
prove the pattern for all k.)




Chapter 4

Bijections and Cardinality

We begin this chapter by discussing how to represent natural num-
bers. Our first main result is the analogue of decimal representation
using any base g. The base g representation provides a unique name for
each natural number and thus introduces the notion of a one-to-one cor-
respondence. We study such correspondences via properties of functions
and use this to develop the notion of cardinality of sets.

4.1. Problem. The Weights Problem. A balance scale has left and right
pans; we can place objects in each pan and test whether the total weight is
the same on each side. Suppose that five objects of known integer weight
can be selected. How can we choose the weights to guarantee being able
to check all integer weights from 1 through 121? Given an object believed
to have weight n € [121], how should we place the known weights to check
it? Is it possible to choose five values to check more weights? ]

4.2. Problem. Is there a one-to-one correspondence between the set of
points in the open interval (0, 1) and the set of real numbers? ]

REPRESENTATION OF NATURAL NUMBERS

The most naive way to represent the number “one hundred” is by a
collection of one hundred dots; it is hard even to count them. We can
arrange the dots in a ten-by-ten square, but no geometric method gives
convenient representations of large natural numbers.

Roman numerals permit a reasonably concise description of large nat-
ural numbers, but they make arithmetic computations difficult. In Roman
numerals, the symbols I, V, X, L, C, D, M represent 1, 5, 10, 50, 100, 500,
1000. Other numbers are represented by strings of these symbols using
complicated rules involving addition and subtraction of adjacent symbols.

76
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For example, 2 is written as II, 44 as XLIV, 88 as LXXXVIII, and 90 as
XC; addition of 2 and multiplication by 2 are awkward operations!

The familiar decimal representation facilitates arithmetic computa-
tions and represents fairly large numbers concisely. The decimal (base
10) representation of a natural number is a string of symbols from
{0,1,...,9}, encoding the number as a sum of multiples of powers of 10.
Chemists, physicists, and astronomers often need very large numbers and
express them in “scientific notation”, a variant of decimal representation
where only the significant digits and the order of magnitude are recorded
(6.02 x 10% is scientific notation for 602,000,000,000,000,000,000,000).
Computer scientists use binary (base 2), octal (base 8), and hexadeci-
mal (base 16) representations, where the string representing the number
encodes its expression as a sum of multiples of powers of the base.

The appropriate method of representation depends on the problem
being solved. In base g, there are g elementary symbols, representing
the numbers 0 through ¢ — 1. Computers use binary digits (“bits”) be-
cause there are two alternatives for a switch: “on” or “off”. In solving the
Weights Problem (Problem 4.1), we will apply base 3 representation.

4.3. Definition. Let g be a natural number greater than 1. A g-ary or
base g representation of n is a list a,, ..., ap of integers, each in
{0,1,...,9 — 1}, such that a,, > O and n = Y|, a;iq’. For clarity, we
may use a subscript (¢) to indicate that the base is g. We call represen-
tations in base 2, 3, or 10 binary, ternary, or decimal, respectively.

In Theorem 4.7, we will prove that every natural number has a unique
base g representation. This allows us to write “the base g representation”
instead of “a base g representation”.

4.4. Example. The ternary representations for the first ten natural num-
bers in order are 1, 2, 10, 11, 12, 20, 21, 22, 100, 101. The corresponding
representations in base 4 are 1, 2, 3, 10, 11, 12, 13, 20, 21, 22. [ ]

4.5. Example. Base 10 is the familiar base for representing numbers.
For the natural number 354 = 3 - 102 + 5. 10! + 4 - 10°, the elements of
the base 10 representation are az = 3, a1 = 5, ap = 4. We can also write
354 =2-534+4-.5%2+0-5"+4.5° expressed concisely as 2404;). Note
that the coefficient of the highest power of g appears at the left.

There are several ways to find a representation of a number » in base
q. One way is first to determine the largest nonzero index m by finding
the largest power of ¢ that is at most n. The coefficient a,, is the largest
multiple of g™ that can be subtracted from n without making it negative.
We then repeat the procedure with what remains, which is smaller than
q™. For example, 5% is larger than 354, but 53 is not, so the base 5 repre-
sentation of 354 starts with a3. Since 5% = 125 can be subtracted twice
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from 354, the representation begins with ag = 2, followed by the repre-
sentation of 104. By this procedure, we obtain 35439y = 24045,. In other
bases, we have 35419y = 112024, = 1110103, = 1011000103,. ]

The procedure in Example 4.5 generates a base g representation for
each natural number (Exercise 14). This procedure is much faster than
the simpler one used in Theorem 4.7 to generate base g representations.

4.6. Theorem. Let g be a natural number greater than 1. Every natural
number has a unique base g representation with no leading zeros.

Proof: We first use induction on n to construct a base g representation
of n. For n = 1, we have the representation with ap = 1. For n > 1, we
assume that n — 1 has a base g representation. Letn —1 = "7 a;¢’ with
an # 0 be such a representation.

Ifa, =--- =ao = q — 1, then we represent n by a,,,1 = 1and q; =0
for j < m. This works, since the geometric sum (Corollary 3.14) yields

n—1=Y"oq-Dg =@-D Y] oq =@q- DLt =gm1 -1,

and thus n = g”*1,

Otherwise, some coefficient in the expansion is less than g — 1, and we
let t be the smallest index such thata, < g—1. Define by, ..., b, by b; = g;
for j > t,b, =a,+1, and b; = 0 for j < ¢. Since a; = g — 1 forall j (if any)
with j <, the geometric sum as above yields } 7o bjq’ =1+ 37 a;q’,
and thus b,,, ..., by is a base g representation of n.

We prove uniqueness by the method of descent. Suppose that
a,,...,apand by, ..., by are distinct base g representations of some n € N.
If r # s, then by symmetry we may assume that r > s. Now the num-
ber represented by a,, ..., ag is at least ¢", but the number represented by
bs, ..., bg is at most Z;;})(q —1)q/ = q" — 1, so this case never occurs.

Thus we have r = 5. Both a, and b, are nonzero, and we can subtract 1
from each to obtain distinct base g representations of the smaller number
n — q". Hence there is no smallest failure of uniqueness. ]

Base g provides both convenient representations of natural numbers
and a system of computation. We can compute directly in base g as we
do in base 10, but we “carry” or “borrow” q rather than 10. For example,
425, + 145y = 1115). The proof of Theorem 4.6 uses the notion of carrying
in base g. It also illustrates the familiar statement that m exceeds n if and
only if, in the highest-order position where their decimal representations
differ, the digit for m is larger than the digit for n.

Ternary representations lead to a solution of Problem 4.1. For an
approach using induction, see Exercise 15.

4.7. Example. To understand the Weights Problem, we first consider the
analogous question with fewer weights. With two weights, we do best by
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choosing {1, 3}; we can then test 2 by putting 1 and 3 on opposite sides
and test 4 by putting them on the same side, along with testing 1 or 3 by
using that weight alone.

Exploring a mathematical problem may involve both experimenta-
tion and insightful thinking. Here we may experiment to find that choos-
ing {1, 3, 9} for three known weights allows us to balance all unknown
weights up to 13, and no other choice goes farther. This pattern suggests
that choosing powers of 3 as the unknown weights may be a good idea.
Insightful thinking may suggest this choice directly, since for each weight
we have the three options of “left pan”, “right pan”, and “omit”. Using
powers of 3 allows us to exploit these three options fully.

Now consider five weights. Using {1, 8, 9, 27, 81}, we can balance an
unknown object A of weight 49 (for example) by using {9, 27} and A on
one side and using {1, 3, 81} on the other side. The picture below shows
how this example is solved by the general method in Solution 4.8. The
largest weight that can be balanced is 1 + 3 + 9 + 27 4+ 81 = 121. With
these weights, we can balance each integer weight up to 121. We will also
see that this is the best choice. ]

n=49, k=5, n=49+121 =170

@ as, asz, ag, m,a0 =2,0,0,2,2

enEn—-
by, b3, ba,b1,bp=1,-1,-1,1,1

3

—

4.8, Solution. The Weights Problem. On a balance scale, we prove that
theset S; = {1, 3, ..., 3"} of k known weights permits the checking of all
integer weights from 1 through (3* — 1)/2, and that no other choice of k
known weights permits more values to be checked.

Let f(k) = (8% — 1)/2. We prove first that for 1 < n < f(k), the set S,
allows us to balance an object A of weight n. We need to use known weights
from S; so that the difference between the total weight on the side oppo-
site A and the total weight on the side with A is n. Weights on the opposite
side count positively, and those on the side with A count negatively. Thus
it suffices to express n as Zf.‘;g b;3', where each b; € {—1, 0, 1}. Interpret-
ing the values —1, 0, 1 for b; to mean “same side as A”, “off the balance”,
and “side opposite to A” yields an explicit configuration that balances A.

We find by, ..., b,_1 using the ternary representation of the number
n’ =n+ f(k). The equationn = Zf.‘;(} b;3' holds if and only if the equation
n = Zf.‘;(} (b; + 1)3' holds, because the geometric sum yields (3 — 1)/2 =
Z:f.‘;é 8. Since n < f(k), we have n’ < 2f(k) = 3* — 1. Theorem 4.6
now guarantees a (unique) expression of n as n = Y.*_) 4;3' with each
a; € {0, 1, 2}. Setting b; = a; — 1 yields the desired weighing of n.
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We also must prove that no other set of weights can balance more
values. We count the possible configurations: each weight can be placed
on the left, on the right, or omitted, generating 3* possible configurations.
The configuration that omits all weights balances no nonzero weight. Of
the remaining 8% — 1 configurations, each balances the same weight as the
configuration obtained by switching the left pan and right pan. Hence at
most (3% — 1)/2 distinct values can be weighed. ]

BIJECTIONS

Given ¢, Theorem 4.6 provides a unique name for each natural num-
ber. This name is a sequence from {0, ..., g — 1} that is 0 after some last
nonzero term. Let § be the set of these sequences. The theorem estab-
lishes a one-to-one correspondence between § and N. The function
f: S — N defined by f({(a)) = Y_a;q’ assigns to each (a) € S a natural
number. Furthermore, each natural number is assigned to exactly one
{(a) € S. Thus we have matched up the elements of S with those of N. The
sequence matched with n € N is its base ¢ representation.

One-to-one correspondences have many applications. For example,
we can interpret solving equations in this way. Given f: A — B, the
equation f(x) = b has a unique solution whenever » € B if and only if f
establishes a one-to-one correspondence between A and B.

We illustrate the subtlety of this notion by constructing a one-to-one
correspondence between N and Z, even though N is a proper subset of Z!

4.9. Example. One-to-one correspondence between N and Z. We define a
function from N to Z by letting f(n) = —(n+1)/2ifnis odd and f(n) = n/2
if n is even. Note that f(n) is negative when » is odd and nonnegative
when 7 is even. Thus f(n) = b for b € Z has the unique solution n = 2b
when b > 0andn = -2b—1whenbd < 0. |

We formalize the notion of one-to-one correspondence using functions.

4.10. Definition. A function f: A — B is a bijection if for every b € B
there is exactly one x € A such that f(x) = b.

4.11. Example. Pairing up spouses. Let M be the set of men at a party,
and let W be the set of women. If the attendees consist entirely of married
couples, then we can define a function f: M — W by letting f(x) be the
spouse of x. For each woman w € W, there is exactly one x € M such that
f(x) = w. Hence f is a bijection from M to W. [ ]

4.12. Example. Linear equations in two variables. Given constants
a,b,c,d € R, let f: R2 » R? be defined by f(x,y) = (ax + by, cx + dy).
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Theorem 2.2 states that the pair of equationsax + by =randcx +dy ==
has a unique solution for each (r,s) € R? if and only if ad — bc # 0. In
other words, the function f is a bijection if and only if ad — bc # 0. ]

When discussing a bijection f: A — B, we often speak more infor-
mally of a one-to-one correspondence between A and B. This emphasizes
that we can view the paired elements of the domain and target from ei-
ther direction. Each element of B is the image of exactly one element of
A. Thus assigning to each element of B the element of A of which it is the
image defines a function from B to A that “undoes” f.

4.13. Definition. If f is a bijection from A to B, then the inverse of f is
the function g: B — A such that, for each b € B, g(b) is the unique
element x € A such that f(x) = b. We write f~! for the function g.

4.14. Example. The identity function on a set S is a bijection from S to §
that is its own inverse.

The function f: R — R defined by f(x) = 3x is a bijection. Its inverse
is defined by f~1(b) = b/3.

When ad — bc # 0, the inverse of f in Example 4.12 is the function
that expresses the solution pair (x, y) in terms of the pair (r, s). ]

4.15. Remark. If f is a bijection and g is the inverse of f, then g is also
a bijection and f is the inverse of g. This follows from the interpretation
of a bijection as a pairing up of sets; in one direction the map is f, and in
the otheritis g. Thus (f1)~! = f. [

4.16. Example. The formula for converting Celsius temperature to
Fahrenheit temperature is f(x) = (9/5)x + 32; this defines a bijection
from R to R. The inverse function g is defined by g(b) = (5/9)(b — 32). We
have g(f(x)) = x for x € R, and also f(g(b)) = b for b € R. When g is ap-
plied to true physical temperatures, the domain is {b € R: b > —273.15}.

104 40
98.6 ga 37
86 30
68 20
50 10
32 0
F C

When interpreting physical measurements, care is needed in con-
verting from one scale to another. It is commonly believed that “normal
body temperature” is 98.6 degrees Fahrenheit, which equals 37 degrees
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Celsius, exactly. Body temperature was first discussed using the Celsius
scale. Perhaps “37 degrees” is the average body temperature accurate
to the nearest degree Celsius. It is inappropriate to state the “normal”
Fahrenheit body temperature to the accuracy suggested by 98.6. ]

Showing that f: A — B is a bijection means showing that for each
b € B, the equation f(x) = b has a unique solution in A. Solving the
equation to write a formula that determines x in terms of b obtains a
formula for f~!. We must check that the formula is valid on all of B.

4.17. Example. Define f: R — R by f(x) = 5x — 2|x|. We show that f
is a bijection by solving f(x) = b for each b € R, thereby obtaining f~1.
Observe that f(x) has the same sign as x. When seeking f~1(b) for b € R,
this enables us to assume that x has the same sign as b.

When b > 0, our equation becomes b = 5x — 2 |x| = 3x, and x = b/3 is
the unique solution. When b < 0, our equation becomes b = 5x — 2|x| =
5x + 2x = 7x, and x = b/7 is the unique solution.

For each b € R, we have shown that f(x) = b has a unique solution.
Thus f is a bijection. Its inverse is defined by f~'(b) = b/3 if b > 0 and
flb)=b/7ifb < 0. .

A bijection transforms elements of one set into elements of another,
allowing us to work in either context. For example, we can encode a subset
S of [n] by recording the presence or absence of element i asa 1 or 0 in
position i of an n-tuple m(S). An n-tuple with entries in {0, 1} is a binary
n-tuple; we call m(S) the binary encoding of S. From a binary n-tuple
b we will uniquely retrieve S such that m(S) = b. Thus binary encoding is
a bijection from the power set of [n] to the set of binary n-tuples. (Recall
that the power set of T is the set of all subsets of T.)

4.18, Example. Given lights labeled 1, ..., n, we can specify a subset of
[n] by turning the corresponding lights on. Binary encoding records in
position i whether light i is on or off. Below we illustrate the correspon-
dence when n = 3. The bijection for general n enables us to view subsets
of [n] as binary n-tuples and vice versa, transforming statements about
one context into statements about the other. ]
lights on: 2 {1} {2} {3} {1,2} (1,3} {2,3) {1,2,3}
image: (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

4.19. Proposition. Binary encoding establishes a bijection from the
power set of [n] to the set of binary n-tuples.

Proof: Let m(S) be the binary encoding of S. We prove that for each binary
n-tuple b, there is exactly one subset S of [n] such that m(S) = b.
Let b be a binary n-tuple; we construct a set S such that m(S) = b.
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For eachi € [n], weputi € Sifb; =1 andi ¢ S if b; = 0. Applying m, we
find that the ith position in m(S) is b;, and thus m(S) = b.

We also show that for each binary n-tuple b there is at most one so-
lution to m(S) = b. We prove the contrapositive; distinct subsets S and T
of [n] have distinct images. Because S # T, some i € [n] belongs to one of
{S, T} but not the other. Hence position i has a 1 in one of {m(S), m(T)}
and a 0 in the other. Thus m(S) and m(T) cannot both equal b. [ |

Binary encoding provides a useful language for proving results about
subsets. We can also interpret binary n-tuples as binary representations
of integers from 0 to 2" — 1, using the bijection in Theorem 4.6.

INJECTIONS AND SURJECTIONS

The condition for a function to be a bijection is the combination of
two conditions that we can consider independently. Often we prove that
a function is a bijection by verifying these two conditions separately.

4.20. Definition. A function f: A — B is injective if for each b € B,
there is at most one x € A such that f(x) = b. A function f: A — B
is surjective if for each b € B, there is at least one x € A such that
f(x) = b. The corresponding nouns are injection and surjection.

In Proposition 4.19 we proved first that binary encoding is surjective
and then that it is injective.

4.21. Remark. Geometric interpretation of injection and surjection. A
function f: R — R is injective if and only if every horizontal line in-
tersects its graph at most once, and f is surjective if and only if every

horizontal line intersects its graph at least once. ]
f(x) =x° g(x) = x? h(x) = x*

4.22. Example. Graphing f(x) = x% and using Remark 4.21 suggests
that this formula defines a bijection f: R — R. We shall see that f is
injective because it is an increasing function. The proof of surjectivity
requires the existence of cube roots of real numbers.

The function g: R — R defined by g(x) = x2 is neither injective nor
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surjective. Since g(—1) = g(1), it is not injective. Since its image contains
no negative numbers, it is not surjective. When P = {x € R: x > 0}, the
function h: P — P defined by k(x) = x2 is a bijection, as is the function
defined by this rule with domain and target [0, 1]. [ |

4.23. Example. Consider f: R — R defined by f(x) = 1/(1 + x?). At-
tempting to solve for x in b = 1/(1 + x2) yields x = £+.,/(1/b) — 1. When
b < 0 or b > 1, there is no solution. Here the inverse image of b is
empty, and thus f is not surjective. When 0 < b < 1, there is at least one
solution. For b € (0, 1) there are two solutions, so f is not injective.
Jet A={x e Rix >0}and B ={x € R:0 < x < 1}. If we use
the formula g(x) = 1/(1 + x2) to define a function g: A — B, then g is
a bijection. We have chosen the target to ensure existence of a solution
to g(a) = b for each b € B, and we have chosen the domain to ensure
uniqueness of the solution to g(a) = b. [ ]

4.24. Remark. Schematic interpretation of injection and surjection. In
the diagram of a function f: A — B suggested in Remark 1.22, each ele-
ment of A is the tail of exactly one arrow; this follows from the definition
of function. The function f is injective if each element of B is the head
of at most one arrow, meaning that there is no “collapsing” of elements.
The function is surjective if each element of B is the head of at least one
arrow, meaning that no element of the target is “missed”.

Reversing the arrows yields a function if and only if f is a bijection,

in which case the resulting function from B to A is f~1. ]
L [ ]
e T
A f B A f B A f B A f B
injective injective surjective not injective
and and and and
surjective not surjective not injective not surjective

The geometric interpretation of injection (Remark 4.21) suggests that
every increasing real-valued function is injective.

4.25. Proposition. Let f be a real-valued function defined on a subset of
R. If f is strictly monotone, then f is injective.

Proof: Given distinct x, y in the domain, we may assume by symmetry
that x < y. If f is increasing, then f(n) > f(y). If f is decreasing, then
f(x) > f(y). In either case, x # y implies f(x) # f(y), so f is injective. B
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4.26. Example. Exponentiation. The function f: R — R defined by
f(x) = x" is strictly increasing when » is an odd natural number. When n
is even, f is not injective; in this case x” = y"” whenever y = +x. Exercise
18 requests the details. ]

4.27. Example. What are the solutions to the equation below?
x4+ x3y +x2y2 +xy? 4yt =0 (%)

Certainly (x, y) = (0, 0) is a solution; we show that there are no others.
First consider the solutions with x = y. Setting x = y in (x) yields 5x* = 0,
which implies that x = 0.

Next consider solutions with x # y. Using Lemma 3.13, we obtain

0=(x*+x3y +x2y% + xy3 + yH)(x — y) =x% — y5.

Exponentiation to an odd power is injective, so x # y yields no solution. B

COMPOSITION OF FUNCTIONS

When we have a function whose target is contained in the domain
of a second function, we can create a new function by applying the first
and then the second. This yields a function from the domain of the first
function into the target of the second.

4.28. Definition. If f: A —> B and g: B — C, then the composition of
g with f is a function h: A — C defined by 2(x) = g(f(x)) for x € A.
When # is the composition of g with f, we write h =g o f.

4.29. Example. If f: R — R and g: R — R are defined by f(x) = x — 2
and g(x) = x% + x, then g o f is defined by

@oNX)=g(f(x))=x—-22+x-2)=x>-3x+2.
On the other hand, (f o g)(x) = f(g(x)) = x2+x — 2. "
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The properties we have been studying are preserved by composition.

4.30. Proposition. The composition of two injections is an injection.
The composition of two surjections is a surjection.
The composition of two bijections is a bijection.
If f, g are bijections (so g o f is a bijection), then (go )™} = f~log
(the Inverse Composition Formula).

Proof: (Exercise 33). |

-1

4.31. Example. The function #: R — R defined by A(x) = mx + b is a
bijection when m # 0. Its inverse [ is defined by /(y) = (y — b)/m. Let f
be “multiplication by m”, and let g be “addition of b”. We haveh = go f
and/ = f~1o g1, thus illustrating the Inverse Composition Formula. ®

If f: A - B is a bijection and g = f~!, then g o f is the identity
functionon A, and f og is the identity function on B. Exercises 35-36 ask
whether f must be a bijection when g o f or f o g is an identity function.

Example 4.29 shows that f o g need not equal g o f; composition of
functions from a set to itself is not generally commutative. On the other
hand, composition is always associative. We can form a composition hogo
f by composing h o g with f or by composing 4 with g o f. These always
yield the same function, which justifies dropping the parentheses.

4.32. Proposition. (Associativity of composition) If f: A — B and
g:B—>Candh: C —> D,thenho(go f)y=(hog)o f.

Proof: The two named functions have domain A and target D, so it suf-
fices to show that they agree on each element of A. We evaluate each
function at an arbitrary element x € A.

(ho(go fNXE)=h((go f)x) =h(g(fx)))
(hog)o f)x) =(hog)(f(x)) =h(g(f(x)) u

COSESES

B C D

We close this section with several examples of ways to obtain new
functions from given functions. Such a procedure is a function whose do-
main and target are themselves sets of functions. To avoid confusion, we
use the word “operator” to describe a function defined on a set of func-
tions. Operators that map a collection of functions to itself can be applied
successively, allowing us to discuss composition of operators.
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The simplest example of an operator is the identity operator, mapping
each function f to itself. We mention several others.

4.33. Example. Translation and Scaling. Given f: R > R,let T, f: R —
R be the function defined by (7, f)(x) = f(x + a). The “machine” T, takes
a function as its input and returns a function as its output. When a = 0,
the translation operator is the identity operator.

Similarly, the scaling operator S, takes f to the function S, f defined
by (S, f)(x) = f(bx). When b = 1, this is the identity operator.

Translation and scaling have natural interpretations in terms of the
graph of the function f (Exercise 38). ]

4.34. Example. Sum and Product. In Definition 1.25 we defined new
functions from real-valued functions f, g with the same domain, calling
these the sum f + g and the product fg. We can understand this in
another way. Define operators A and M by A(f,g) = f +gand M(f,g) =
fg. If W is the set of all real-valued functions with this domain, then the
operators A and M are functions with domain W x W and target W. &

4.35. Example. Let S be the set of polynomials in one variable. Given
the polynomial f defined by f(x) = ZLO a;x', let Df denote the polyno-
mial whose value at x is Y"+_, a;ix'~1. The operator D (the differentiation
operator from calculus) is a function D: S — S. It is surjective; the poly-
nomial with coefficients {a;} is the image of the polynomial in which the
coefficient of x° is 0 and the coefficient of x* is a;_;/k for k > 1. The oper-
ator D is not injective; the polynomials f, g defined by f(x) = x + 1 and
g(x) = x + 2 have the same image.

We define another operator J: § — §. For f(x) = Zf:o aixt, let Jf
denote the polynomial whose value at x is Z;‘=o ax*t)i+1). IfJf = Jg,
then term-by-term comparison of coefficients shows that f = g; hence J
is injective. On the other hand, J is not surjective, because there is no
polynomial f such that Jf is a nonzero polynomial of degree 0.

We can compose operators. We have D(J(f)) = f for all f € §, but
J(D(f)) does not equal f when f(0) # 0. For example, if f(x) = x2 + 3,
then J(D(f)) is the function g defined by g(x) = x2. [

CARDINALITY

Often we want to know how big a set is. The precise meaning of
this involves bijections. The definition agrees with intuition, and we have
been using it implicitly. We have the notation [k}l = {1,2,...,k} fork e N;
we also define [0] = . We need several preliminary notions.




88 Chapter 4: Bijections and Cardinality

4.86. Definition. A set A is finite if there is a bijection from A to [k] for
some k € NU {0}. A set is infinite if there is no such bijection.

Note that the empty set is considered a finite set.

4.37. Proposition. If there is a bijection f: [m] — [n], then m = n.
Proof: (Exercise 42). ]

4.38. Corollary. If A is finite, then for exactly one n there is a bijection
from A to [n].

Proof: By the definition of finiteness, such a number exists. Suppose that
bijections g: A — [m] and h: A — [n] exist. Because the composition of
two bijections is a bijection Proposition 4.30, the function f =hoglisa
bijection from [m] to [r]. By Proposition 4.37, m = n. [ ]

4.39. Definition. The size of a finite set A, written |A|, is the unique
n such that there is a bijection from A to [n]. A set of size n is an
n-element set or n-set.

4.40. Remark. Size of finite sets. The domain of the size function is the
set of all finite sets; its target is the set of nonnegative integers. Corollary
4.38 states that this function is well-defined in the sense of Remark 1.24.
When we write A = {ay, ..., a,} with the a;’s distinct, we are specifying a
bijection from [»] to A and stating that the size of A is n.

The notation for size is the same as the notation for absolute value;
size measures discrete distance to A from the empty set, and absolute
value measures linear distance to a number from 0. Since size applies
only to sets and absolute value applies only to numbers, the context indi-
cates whether size or absolute value is being used. [ ]

The definition of size using bijections leads to many natural results.
4.41. Corollary. If A and B are disjoint finite sets, then
AU B| = |A| +|BI.
Proof: Let m = |A| and n = | B|. Given bijections f: A — [m]and g: B —
[n], we define h: AUB — [m+n] by h(x) = f(x) for x € A and h(x) =

g(x) +m for x € B. Upon checking that % is a bijection (Exercise 44), the
conclusion follows. [ |

AUB [m + n)




Cardinality 89

Deleting an element of an infinite set leaves another infinite set, but
deleting an element of a nonempty finite set decreases its size by one.
This enables us to prove statements about finite sets by induction on size.

4,42, Corollary. Every nonempty finite set of real numbers has both a
maximum element and a minimum element.

Proof: We use induction on the size of the set. If |A| = 1, then the only
element of A is both its maximum and its minimum. If |[A| = 2, then
the larger element is the maximum and the smaller is the minimum, If
|A| > 2, choose x € A. The induction hypothesis yields a maximum M
and minimum L for A — {x}. Compare x with M to find the maximum and
with L to find the minimum. [ |

In Chapter 5, we will study the counting of finite sets in much more
depth. Meanwhile, we consider infinite sets. We do not extend | | to infi-
nite sets. Nevertheless, we can use bijjections to compare infinite sets.

4.43. Definition. An infinite set A is countably infinite (or countable)
if there is a bijection from A to N; otherwise A is uncountably infi-
nite (or uncountable). Sets A and B have the same cardinality
if there is a bijection from A to B.

Some authors allow “countable” to apply also to finite sets. We adopt
the more common convention that a countable set has the same cardinal-
ity as N and hence is infinite.

We have seen that Z is countable (Example 4.9). Also Q is countable
(Exercise 8.17), but R is not (Theorem 13.27).

When there is a bijection from A to a proper subset of B but no bijec-
tion from A to B, we think of B as being larger than A; thus infinite sets
are larger than finite sets. Since N is a subset of R and R is uncountable,
R is larger than N. Since Z is countable, we do consider Z to be larger
than N; they have the same cardinality.

To show that a set § is countable, we place its elements in a sequence
so that each element appears exactly once. This specifies a bijjection from
N to S. Using this approach, we show next that the Cartesian product of
two countable sets is countable.

4.44. Theorem. The sets N x N and N have the same cardinality (N x N
is countable).

Proof: View the ordered pairs {(i, j): i, j € N} as points in the plane with
positive integer coordinates. We list the ordered pairs in sequence by
listing each successive diagonal in order. The pairs appear in order of in-
creasing i + j, and the pairs with a fixed value of i + j appear in increasing
order by j, as illustrated below. ]
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4.45. Example. Another bijection from N x Nto N. Define f: NxN—> N
by f(m,n) = 2"-1(2n — 1). By Proposition 3.32, every natural number is
an odd number times a power of 2, so f is surjective. By the uniqueness
part of Proposition 3.32, f is also injective. [ ]

We have seen that an infinite set can have the same cardinality as
another set that properly contains it. Here is another example.

4.46. Solution. A bijection from (0,1) to R. Obtaining a bijection from
one set to another proves that the two sets have the same cardinality.
Consider the open interval (0, 1) and the set R. We can map (0, 1) to an
interval centered on 0 by subtracting 1/2. We then want to stretch the
first half of the interval onto the set of negative real numbers and the
second half onto the set of positive real numbers. The graph of a function
doing this crosses the horizontal axis at x = 1/2 and rises without bound
as x approaches 1, but falls without bound as x approaches 0.
We construct an example whose injectivity and surjectivity we can
verify without appealing to geometric intuition. Define f: (0, 1) > R by
() = =02 ify <1/2
FO=V b ey 5y,
Since f(x) > 0 when x > 1/2 and f(x) < 0 when x < 1/2, we may con-
sider one side of 1/2 at a time. If x,x’ < 1/2 and "‘—‘xl& = #’ then
simplifying yields x = x’. The computation is similar when x, x" > 1/2.
When y < 0, we find x < 1/2 such that y = f(x). From y = "'—(xl&,
we solve for x to obtain x = 2(—11_§ Since 1 — y > 1, we have x € (0, 1/2).

Similarly, when y > 0 we use y = =42 to obtain x = %1& Since y > 0,

1-x

we obtain x € (1/2, 1). ]

Consider sets A and B and functions f: A > Band g: B —» A. If
A and B are finite and f and g are injections, then f and g must also
be bijections (Exercise 46). When A and B are not finite, the conclusion




Cardinality 91

that f and g are bijections need not hold. For example, let A = (0, 1) and
B = [0, 1], and define f: A > Band g: B > Aby f(x) = x and g(x) =
(x + 1)/3. Then f and g are both injections, but neither is a bijection.
Nevertheless, the existence of injections f and g always implies that A
and B have the same cardinality. This gives us a method for proving that
two sets have the same cardinality without providing an explicit bijection.

4.47. Theorem. (Schroeder-Bernstein Theorem)If f: A > Bandg: B -
A are injections, then there exists a bijection #: A — B, and hence A
and B have the same cardinality.

Proof: (optional) We view A and B as disjoint sets, making two copies of
common elements. For each element z of AU B, we define the successor of z
tobe f(z)ifz € A, and g(z) if z € B. The descendants of z are the elements
that can be reached by repeating the successor operation. We say that z is
a predecessor of w if w is the successor of z. Because f and g are injective,
every element of AU B has at most one predecessor. The ancestors of 7 are
the elements that can be reached by repeating the predecessor operation.

The family of z consists of z together with all its ancestors and de-
scendants; call this F(z). We use the structure of families to define a
one-to-one correspondence between A and B. The successor operation
defines a function f' on A U B; below we show several possibilities for
families using a graphical description of f'.

First suppose that 7 is a descendant of ;. Because every element has
at most one predecessor, in this case F(z) is finite (repeatedly composing
the successor function leads to a “cycle” of elements involving z). Applying
f' alternates between A and B, and thus F(z) has even size. For every
x € Ain F(z), we pair x with f(x); because F(z) has even size, this is a
one-to-one correspondence between F(z) N A and F(z) N B.

Otherwise, F(z) is infinite. In this case, the set S(z) of ancestors of
z may be finite or infinite. When S(z) is finite, it contains an origin that
has no predecessor (all elements of F(z) have the same origin). If S(z) has
an origin in B, then for every x € A N F(z) we pair x with its predecessor
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g~ (x); because B contains the origin, g~1(x) exists. When S(z) is infinite
or has an origin in A, we pair x with its successor f(x).

Because every element has at most one predecessor, the pairing we
have defined is a one-to-one correspondence between the elements of A
and the elements of B within F(z). Since the families are pairwise disjoint,
it is also a one-to-one correspondence between A and B. In more techni-
cal language, we have defined the function h: A - B by h(x) = g~ 1(x)
when the family of x has an origin in B, and h(x) = f(x) otherwise. The
function  is the desired bijection. [ ]

HOW TO APPROACH PROBLEMS

Functions and their properties are fundamental tools in all areas of
mathematics. Although these concepts may seem abstract at first, they
arise from familiar situations such as solving equations. The exercises
emphasize understanding and application of definitions rather than sub-
tle insights or inventiveness. We list a few helpful principles.

1) Definitions are your friends.

2) Standard examples can provide counterexamples or suggest proofs.
3) Bijections can transform problems into more convenient contexts.
4) Countability of a set amounts to placing its elements in a sequence.

The role of definitions.

The definitions in this chapter provide road maps for what must be
done to answer a question. To show that a function is a bijection, one must
show that the inverse image of each target element consists of exactly
one domain element. The concepts of injection and surjection break this
requirement into two pieces. Although we can interpret injections and
surjections schematically or geometrically, we return to the definitions
to write proofs. The table below summarizes the meanings of injective,
surjective, and their negations. Given f: A - B and b € B, recall that
I;(b) denotes {x € A: f(x) = b} (Definition 1.35).

A proof that f: A — B is injective shows that f never maps two
elements of A to a single element of B; every element of B is the image
of at most one element under f. We consider pairs x,y € A and prove
“f(x) = f(y) implies x = y” or its contrapositive “x # y implies f(x) #
f(»)”. To prove that f is not injective, it suffices to exhibit a pair x,y € A
with x # y and f(x) = f(y).

A function f: A — B is surjective if its image is all of its target. For
all b € B, we must prove that there exists x € A such that f(x) = b.
Usually, we construct an example of such an x (in terms of b); this means
finding a solution to f(x) = b. To prove that f is not surjective, we show
for some b € B that f(x) = b has no solution, so b is not in the image of f.
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Injective Not Injective
(Vb € B)lI;(b) has at most one element] (3b € B)[/;(b) has at least two elements]
Vx,x' € A)lx #x' = f(x) # f(x")] (3x,x" € A)lx # x'and f(x) = f(x)]
(Vx,x" € Alf(x) = f(x) = x = %]

Surjective Not Surjective
(Vb € B)lI;(b) is nonempty] (3b € B)lI;(b) is empty]
(Vb€ BY(3x € A)[f(x) =b] (3b € B)(Vx € A)[f(x) # b]

The best way to prove injectivity depends on the function. When f
is defined by a formula, it may be easy to manipulate the equation given
by the hypothesis f(x) = f(y) to derive x = y; consider the example
f(x) =mx+cwithm # 0. When f is defined using words, it may be more
natural to show that x # y implies f(x) # f(y), as in Proposition 4.19.

Some authors use the terms “one-to-one” and “onto” for injective and
surjective; we avoid these to eliminate confusion between “one-to-one
function” and “one-to-one correspondence”.

The prefix “sur” means “over” or “above”. The word “surjection” sug-
gests projecting the domain down onto the target; a simple example is the
function f: R2 — R defined by f(x, y) = x. On the other hand, the word
“Injection” suggests placing something inside something else; a simple ex-
ample is the map g: R — R? defined by g(x) = (x, 0). These two examples
should help the student remember which is which.

The usefulness of standard examples and graphs.

Many exercises in this chapter ask whether a statement about func-
tions is true or false. Standard examples provide both insight into proofs
and counterexamples for false statements. Such examples include poly-
nomials, ratios of polynomials, absolute value, and other elementary func-
tions. Also, the schematic diagrams in Remark 4.24 actually specify func-
tions on finite sets.

We remark also on the use of graphs. Graphing a function suggests
properties one might try to prove about it, but statements that depend on
the visual interpretation of a picture require rigorous proof. For example,
surjectivity of the function f: R — R defined by f(x) = x3 depends on the
ability to take cube roots of real numbers. We accept this informally now
for convenience, but a rigorous proof requires the methods of Part IV.

Similarly, stating that the value of x/(1 + x2) is 1/2 when x = 1 and
“approaches” 0 as x “gets large” does not prove that every value between
1/2 and 0 is achieved. Making this inference requires results about limits
and continuity, which are not available to us until Part IV. Meanwhile we
must rely on the definitions; showing that a particular value b is attained
requires solving for x in terms of b (see Example 4.23 and Exercise 22).
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Bijections as transformations.

Our first example of bijection gave us the numerical system of base
q representation. Also important is the flexibility of interpreting natu-
ral numbers as lists. In Exercise 17, binary representation leads to a
startling result about the game of Nim.

Many geometric operations can be interpreted as bijections; see Exer-
cise 20, Exercise 30, and Exercise 38. For readers familiar with calculus,
here we illustrate the use of bijections in making changes of variables.

4.48. Example. The function defined by f(x) = ¢* maps R to R. It is in-
creasing and hence injective, but it is not surjective; its image is the set
of positive real numbers. By restricting the target of ¢* to the set of posi-
tive real numbers, we obtain a bijection. The natural logarithm function,
its inverse, is a bijection from the set of positive real numbers to R. The
function defined by f(x) = sinx from R to the interval [—1, 1] is surjec-
tive but not injective. By restricting the domain of sinx to [-n/2, n/2],
we obtain a bijection to the interval [-1, 1]. |

4.49. Example. Limits of integration under change of variables. In cal-
culus, we often compute a definite integral by changing variables. For
example, consider f02(x3 + 1)33x2dx. Let f(x) = x® + 1. The function
f is a bijection from the interval [0, 2] to the interval [1,9]. Letting
y = f(x) leads to f2(x® + 1)°3x2dx = [ )5dy = (1/6)(9¢ — 1). Simi-
larly, because y = sin x defines a bijection from [-7/2, 7/2] to [-1, 1], we
/2 . 1

compute (", sinxcosxdx = [_; ydy =0.

Changing variables by writing y = g(x) requires that g be a bijection
from the interval of integration in x to the interval of integration in y. As
x varies from a to b, y varies from g(a) to g(b). [ ]

Infinite sets and countability.

How do we show that a set is countable? Expressing A as {a;, as, - - -}
specifies a bijection from N to A. Since the inverse of a bijection is a
bijection, proving that a set A is countable is equivalent to obtaining
a sequence that contains each element of A exactly once. Example 4.9
presents such a sequence for A = Z; this lists the values f(n) in order:
0,1,-1,2,-2,3, -3, - - -. Arguing that this sequence names every integer
exactly once proves that Z is countable.

This is the fundamental technique for proving countability. To show
that the union of a (countable) sequence of countable sets is countable
(Exercise 44), construct a sequence that lists each element of the union
exactly once. Note that one cannot list all of the first set first; one would
never reach the second set. Between any two terms of a sequence there
are only finitely many terms. An arbitrarily large finite set, no matter
how large, is not infinite.
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EXERCISES

4.1. (—) Let 1201023, and 1102223, be ternary representations of two natural
numbers. Use base 3 arithmetic to add them. Check the answer by converting
each to base 10, adding, and converting back to base 3.

4.2. (-) Which integer is bigger, 33312, or 3333,?

4.3. (—) Note that (15)% = 225, (25)? = 625, and (35)2 = 1225. For n € N, prove
that the square of the number given by appending 5 to the base 10 representation
of n is the number given by appending 25 to the base 10 representation of n(n+1).

4.4. (-) Consider a temperature scale T, where water freezes at 20 degrees and
boils at 80 degrees. Suppose that there are constants a and b so that when the
temperature on the Fahrenheit scale is x, the temperature on the T scale is ax +b.
Determine what the Fahrenheit temperature is when the temperature is 50 on
the T scale. (Hint: Solving the problem does not require finding ¢ and b.)

4.5. (—) For which sets A does there exist a bijection from A to A that is different
from the identity function on A?

4.6. (—) Let A be the set of days in the week. Let f assign to each day the number
of letters in its English name. Does f define an injection from A to N?

4.7. (—) For each of the three functions A, M, D defined in Example 1.37, deter-
mine whether it is injective and whether it is surjective.

4.8. (—) Let f and g be polynomials defined by f(x) = x — 1 and g(x) = x® — 1.
Find formulas for fogand go f.

4.9. () Decide whether the following statement is true or false; justify.
“If f and g are monotone functions from R to R, then g o f is also monotone.”

4.10. Suppose that f(x) = ax + b and g(x) = cx + d for constants a, b, c,d with a
and c not zero. Explain why f and g are injective and surjective. Show that the
function 4 defined by & = g o f — f o g is neither injective nor surjective.

4.11. (-) Explain why multiplication by 2 defines a bijection from R to R but not
from Z to Z.

4.12. Determine which of the following statements are true. Give proofs for the
true statements and counterexamples for the false statements.

a) Every decreasing function from R to R is surjective.

b) Every nondecreasing function from R to R is injective.

c) Every injective function from R to R is monotone.

d) Every surjective function from R to R is unbounded.

e) Every unbounded function from R to R is surjective.

4.13. (!) Let n be an integer between 1 and 999. Written as three decimal digits,
let n be abc (that is, n = 100a + 10b + ¢). Let the reverse of a three-digit decimal
number with digits «fy be the three-digit number with digits ySa.

Suppose that a # c (either may be 0). Let x be the difference between n and
its reverse. Prove that x and its reverse sum to 1089.




96 Chapter 4: Bijections and Cardinality

4.14. Prove that the method of Example 4.5 generates a base g representation for
every natural number.

4.15. (!) Consider a balance scale plus k objects of known weights 1,3, ..., 3k-1
(the first k powers of 3). Prove by induction on k that every unknown weight in
the set {1, ..., (3 — 1)/2} can be balanced.

4.16. Consider a balance scale and objects with positive integer weights w; <

- < wy. Prove that using these objects it is possible to balance each integer
weight from 1 to Zi‘.:l w; (as in Problem 4.1) if and only if w; <1+ 2 Z,’: w; for
1 < j < k. For example, everything from 1 to 10 is achievable using {1, 2, 7}, but
with weights {1, 2, 8} it is not possible to balance the integer 4.

4.17. (+) The Game of Nim. A position in Nim consists of some piles of coins. Two
players alternate, with each move removing a portion of one pile. The winner is
the player who takes the last coin.

Suppose that the starting piles have sizes n,, ..., n;. Prove that Player 2 has
a winning strategy if and only if for every j, an even number of ny, ..., n; have
a 1 in position j in their binary representation. For example, when the sizes are
1, 2, 3, the binary representations are 1, 10, 11, and the condition holds.

4.18. Prove that exponentiation to a positive odd power defines a strictly increas-
ing function. For n € N, find all solutions to x* = y". (Hint: Consider the cases
x<0<y,0<x<y,andx <y <0.)

4.19. For k € N, determine all ordered pairs (x, y) such that Z?’;o x%-1yi = 0.
(Hint: Generalize Example 4.27.)

4.20. Let f: R? - R? be defined by f(x, y) = (ax — by, bx + ay), where a, b are
numbers with a2 + b2 # 0.

a) Prove that f is a bijection.

b) Find a formula for f-!.

¢) Give a geometric interpretation of f for the case a® + b? = 1. (Describe the
effect f has on geometric figures in the plane.)

4.21. (!) Let A be the set of subsets of [#] that have even size, and let B be the
set of subsets of [n] that have odd size. Establish a bijection from A to B, thereby
proving that |A| = | B|. (Such a bijection is suggested below for n = 3.)

A @ {23} (13} (1.2}
B (38 (20 1} (1,23}

4.22. Verify that f(x) = Z—f-(’fl—‘-_‘x—) defines a bijection from the interval (0, 1) to R.

(Hint: In the proof that f is surjective, use the quadratic formula.)

4.23. Determine which formulas below define injections from R to R. Determine
which define surjections. For each that does not define a bijection, find a nontrivial
interval § € R (containing more than a single point) such that the formula defines
a bijection from S to S.

a) fx)=x3—x+1.

b) f(x) = cos(rx/2).

4.24. Let f and g be surjections from Z to Z, and let h = fg be their product
(Definition 1.25). Must h also be surjective? Give a proof or a counterexample.
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4.25. Determine which formulas below define surjections from N x N to N.
a) f(a,b) =a+b. d) f(a,b) = (a+ 1)b(b + 1)/2.
b) f(a. b) = ab. e) f(a,b) = ab(a +b)/2.
¢) f(a.b) = ab(b + 1)/2.

4.26. (-) Given f: R — R, suppose that there are positive constants c, @ such
that, for all x, y € R, | f(x) — f(¥)| = c|x — y|*. Prove that f is injective.

4.27. Let f: R — R be a quadratic polynomial. Prove that f is not surjective.
Find a cubic polynomial that is not injective; justify.

4.28. (+) Determine which cubic polynomials from R to R are injective. (Hint:
This is easy if calculus is allowed. To avoid calculus, first use geometric arguments
to reduce the problem to the case x® 4+ rx. Comment: All cubic polynomials from
R to R are surjective, but proving this requires the methods of Part IV.)

4.29. Consider three functions f, g, h mapping R to R, defined by
f@) =x/1+x?),  gx)=x2/Q+x2?),  hx)=x3/1+x?%).
a) Determine which of these functions are injective.
b) Prove that f and g are not surjective.
c) Graph all three functions. (Comment: The graph of 4 should suggest that
h is surjective, but proving this requires the methods of Part IV.)

4.30. (!) Given real numbers a, b,c,d, let f: R?> - R? be defined by f(x,y) =
(ax + by, cx + dy). Prove that f is injective if and only if f is surjective.

4.31. () Let f: A > B be a bijection, where A and B are subsets of R. Prove that
if f is increasing on A, then f~! is increasing on B.

4.32. Let F be a field. Define f on F by f(x) = —x, and define g on F — {0} by
g(x) = x~L. Prove that f is a bijection from F to F and that g is a bijection from
F — {0} to F — {0}.

4.33. (!) Prove the following statements about composition of functions.

a) The composition of two injections is an injection

b) The composition of two surjections is a surjection.

c) The composition of two bijections is a bijection.

d)If f: A — Band g: B — C are bijections, then (go )™ = f~log™. (Hint:
Use associativity of composition to prove that the function f~! o g~! must be the
inverse of the function g o f.)

4.34. (!) Given f: A—> Band g: B —> C,let h = g o f. Determine which of the
following statements are true. Give proofs for the true statements and counterex-
amples for the false statements.

a) If h is injective, then f is injective.

b) If h is injective, then g is injective.

c) If h is surjective, then f is surjective.

d) If h is surjective, then g is surjective.

4.35. (!) Consider f: A - B and g: B — A. Answer each question below by
providing a proof or a counterexample.

a)If f(g(y)) =y for all y € B, does it follow that f is a bijection?

b) If g(f(x)) = x for all x € A, does it follow that f(g(y)) = y for all y € B?
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4.36. Consider f: A > B and g: B = A. Prove that if f o g and g o f both are
identity functions, then f is a bijection. In particular, prove that

a) If f o g is the identity function on B, then f is surjective.

b) If g o f is the identity function on A, then f is injective.

4.37. Consider f: A — A. Prove that if f o f is injective, then f is injective.

4.38. Given f: R — R, define the functions T, f and S, f by (T, f)(x) = f(x + a)
and (S, f)(x) = f(bx). Determine how to modify the graph of f to obtain the
graphs of T, f and S, f. (Hint: For S, f, consider the cases » > 0,6 =0,and b < 0.)

4.39. Let f: R — R be defined by f(x) = a(x +b) — b. Obtain an explicit formula
for the function g that is obtained by n successive applications of f.

4.40. Suppose that f: A — B is a bijection and that g: B — B. Let h be the
composition h = f~ogo f, s0 h: A > A. Derive a formula in terms of f and g
for the function from A to A obtained by n successive applications of h.

441. For f: A— Aandn e N, let f* be defined by f! = f and f" = f o f"~! for
n > 1. Let n and k be natural numbers with k < n. Prove that f* = f* o f*~*,

4.42, Let f be a bijection from [m] to [r]. Prove that m = n. (Hint: Use induction.)

4.43. Let B be a proper subset of a set A, and let f be a bijection from A to B.
Prove that A is an infinite set. (Hint: Use Exercise 4.42.)

4.44. (—) Prove that the function 4 in the proof of Corollary 4.41 is a bijection.

4.45. (1) Let f be a function from a finite set A to itself. Prove that f is injective
if and only if f is surjective. Prove that this equivalence fails when A is infinite.

4.46. (!) Given finite sets A, B, consider a function f: A - B.

a) When f is injective, what is implied about the sizes of A and B?

b) When f is surjective, what is implied about the sizes of A and B?

c) Prove that if A and B are finiteand f: A —> B and g: B — A are injections,
then |A| = |B| and f and g are bijections.

4.477. Prove that the natural numbers, the even natural numbers, and the odd
natural numbers form sets of the same cardinality (they are countable).

4.48. The proof of countability of N x N in Theorem 4.44 specifies a sequence
containing every ordered pair (i, j). Determine the index of the ordered pair @i, j)
in this sequence, as a function of i and j. (Comment: This defines the bijection
f: N x N - Nexplicitly.)

4.49. (!) Let Ay, Az, ... be a sequence of sets, each of which is countable. Prove
that the union of all the sets in the sequence is a countable set.

4.50. Let A=(0,1)and B={yc€R: 0 <y <1}. Define f: A—> Bandg: B—> A
by f(x) = x and g(y) = (y + 1)/2. Obtain an explicit formula for the function
constructed by the proof of Theorem 4.47 for these functions f, g.

4.51. (!) Construct an explicit bijection from the open interval (0, 1) to the closed
interval [0, 1].




PART II

PROPERTIES
OF NUMBERS




Chapter 5

Combinatorial Reasoning

Techniques for determining the sizes of finite sets have applications
in probability, the analysis of computer procedures, and many other areas.
In this chapter we study fundamental models for counting problems, both
on their own and in relation to properties of functions.

5.1. Problem. Summation of Integer Powers. Given a correct formula
for Y ", i*, we can prove it by induction. Lacking a formula, how can we
discover it? ]

5.2. Problem. Comparison of Poker Hands. A poker hand consists of five
cards from an ordinary deck of cards. Why is “three-of-a-kind” a higher-
ranked poker hand than “two-pair”, and why is a “flush” ranked higher
than a “straight”? ]

5.3. Problem. Nonnegative Integer Solutions. Suppose that each resi-
dent of New York City has 100 coins in a jar. The coins come in five types
(pennies, nickels, dimes, quarters, half-dollars). We consider two jars of
coins to be “equivalent” if they have the same number of coins of each
type. Is it possible that no two people have equivalent jars of coins? &

5.4. Problem. The Drummer Problem. At a party there are n married
couples. Each woman is dancing with some man, but not necessarily
with her spouse. The band has two drummers, who alternate songs. Af-
ter each song, two of the women switch partners. During the last song,
each woman dances with her husband. If we know only the initial danc-
ing pairs and the initial drummer, can we determine which drummer is
playing at the end? ]

5.5. Problem. Sorting by Transpositions. Given a list of the numbers 1
through n in some order, how many exchanges of entries are needed to
sort the numbers into the order 1,2-.-,n? [ |

100
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ARRANGEMENTS AND SELECTIONS

In this section we count sets consisting of arrangements and selec-
tions of objects from finite sets. This introduces the factorial function and
the binomial coefficients, which arise in many mathematical contexts.

Many problems can be solved by expressing them in terms of arrange-
ments and selections. More complicated problems may involve combining
several steps. We introduce two elementary rules for combining subprob-
lems, the rule of sum and the rule of product.

5.6. Definition. A partition of a set A is a collection of pairwise disjoint
subsets of A whose union is A. The rule of sum states that if A is
finite and By, ..., B, is a partition of A, then |A| = }_I, | B;|.

The rule of sum follows from Corollary 4.41 by induction on m (Exer-
cise 15). The rule of product is a bit more subtle. Often we can describe
a set by building its elements in stages such that the number of choices
available at the ith step does not depend on previous choices, although
the actual choices available may depend on them.

5.7. Example. A music practice room is available for only one hour dur-
ing each weekday. In how many ways can three students sign up to use
the room during the week? The first student picks one of the five days.
The choices for the second student depend on the choice the first student
makes, but in each case four choices remain. Similarly, the third student
always has three choices. There are therefore 5 - 4 - 3 = 60 possibilities. B

5.8. Definition. Let T be a set whose elements can be described using
a procedure involving steps S, ..., S; such that step §; can be per-
formed in r; ways, regardless of how steps S, ..., Si—; are performed.
The rule of product states that |T| = []}_, :.

The rule of product follows from the rule of sum by induction on k
(Exercise 16). Its most elementary application is |A x B| = |A] - |B|, de-
termining the size of the Cartesian product of finite sets. Repeating this
observation yields a useful example.

5.9. Example. The number of g-ary n-tuples is q". Consider lists of length
n from a set of size ¢, such as {0, 1, ..., ¢ — 1}. As g-ary representations,
these yield the numbers 0 through ¢" — 1; thus the set has size ¢".

The product rule counts this directly without using bijections. There
are g choices for each position, regardless of the choices in other positions.
By the product rule, there are ¢g" ways to form the n-tuple. ]

A list of length k using elements of S specifies a function from [X] to S.
Allowing repeating elements yields all functions from [k] to S. Forbidding
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repetitions restricts the functions to injections. Listing all the elements
without repetition yields a bijection.

5.10. Definition. A permutation of a finite set § is a bijection from S to
itself. The word form of a permutation of [r] is the list obtained by
writing the image of i in position i. We write n!, read as “n factorial”,
tomean [[/_;i=n(n—-1)---1.

The word form of a permutation simply records the function; for ex-
ample, f: [3] — [3] defined by f(1) = 2, f(2) = 3, and f(3) = 1is the
permutation with word form 231. We often use the term “permutation”
for both the function and the word form; an n-tuple of elements of § is
equivalent to a function from [r] to S.

In counting problems, we use the word arrangements to refer to lists
formed from a specified set. We generalize permutations by considering
arrangements without repetition.

5.11. Theorem. An n-element set has n! permutations (arrangements
without repetition). In general, the number of arrangements of k
distinct elements from a set of size nisn(n —1)--- (n —k + 1).

Proof: We count the injections from [k] to S, where n = |S|. There is
no injection when k > n, which agrees with the formula. We construct
all injections by choosing images one by one; choosing the image of i is
choosing the element in position i of the corresponding list.

There are n ways to choose the image of 1. For each way we do this,
there are n — 1 ways to choose the image of 2. In general, after we have
chosen the first i images, avoiding them leaves n — i ways to choose the
next image, no matter how we made the first i choices. The rule of product

yields ]'[f;&(n — i) = n!/(n — k)! for the number of arrangements. ]

By convention, we define 0! = 1, so the general formula simplifies to
n! when we count permutations. This is consistent with saying that there
is exactly one bijection from @ to @. This illustrates a general convention;
the value of an empty sum is the additive identity, and the value of an
empty product is the multiplicative identity. For example, we set x° = 1.

We have counted the arrangements of k distinct elements from S. We
also consider selections of k elements from S, in which the order of the
selected elements is unimportant.

5.12. Definition. A selection of k elements from [#n] is a k-element subset
of [n]. The number of such selections is “n choose k”, written as (}).

Ifk < O or k > n, then (;) = 0; in these cases there are no selections
of k elements from [r]. When 0 < k < n, we obtain a simple formula.
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5.13. Theorem. For integers n, k with 0 <k <n,

(n _ n!
k> Tk —=k!"

Proof: We relate selections to arrangements. We count the arrangements
of k elements from [n] in two ways. Picking elements for positions as in
Theorem 5.11 yields n(n — 1) - (n — k + 1) as the number of arrangements.

Alternatively, we can select the k-element subset first and then write
it in some order. Since by definition there are (:) selections, the product
rule yields (;)k! for the number of arrangements.

In each case, we are counting the set of arrangements, so we conclude
that n(n — 1)--- (n — k + 1) = (})k!. Dividing by ! completes the proof. ®

We often interpret counting problems in the language of probability.
We give a formal definition of probability in Chapter 9. Here we con-
sider only experiments that have n equally likely possible outcomes. We
describe the experiment as choosing one of these outcomes at random.
When A is a subset of the set of outcomes, we define the probability of
A (or of obtaining an outcome in A) to be [A] /n.

5.14. Example. Standard dice have faces showing the numbers 1 through
6. When we roll two different 6-sided dice, there are 36 possible outcomes,
equally likely. In six of these, the total showing on the two dice is 7, so
the probability of rolling 7 is 1/6. a

5.15. Example. A record of n coin flips is a binary n-tuple, using 1 for
heads and 0 for tails. We view the 2" lists as equally likely. The probabil-
ity that the number of heads is even is the fraction of the lists having an
even number of 1s. Using binary encoding (Proposition 4.19), this is also
the fraction of subsets of [n] having even size. When n > 0, half the sub-
sets of [n] have even size (Exercise 4.21 or Exercise 27); we conclude that
the probability of getting an even number of heads is 1/2. ]

5.16. Solution. Comparison of Poker Hands. A standard deck of cards
consists of 52 cards. These come in 13 ranks of four cards each. They are
also grouped into four suits, with one card of each rank in each suit.

When we choose five cards at random from a standard deck, there
are (552) = 2,598,960 possible outcomes (hands); we view them as equally
likely. The probability of a particular type is the number of hands of that
type divided by (552). In poker, rarer types are ranked higher. To rank
types of hands, we compare the number of each type.

Three-of-a-kind means three cards of the same rank and one in each of
two other ranks. This can occur in () (5) () (})(}) = 54,912 ways, since we

pick the special rank, pick three cards from it, pick two other ranks, and
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pick one card from each of those. The rule of product applies; the number
of choices at each step does not depend on the earlier choices made.

Two-pair means two cards each in two ranks and the fifth card in
some third rank. This can occur in (123) () () (4f) = 123,552 ways; we pick
the ranks for the pairs, pick the cards from those ranks, and pick the final
card from the remaining ranks. The computation shows that three-of-a-
kind is less than half as likely and hence is ranked higher.

A flush consists of five cards in one suit and occurs in 4(153) = 5,148
ways. A straight consists of one card each in five consecutive ranks; the
Ace can be considered either the lowest or the highest rank. A straight
can begin at one of 10 possible ranks; thus it occurs in 10 - 4° = 10,240
ways. The flush is rarer. (Here we have counted in each type the hands
that are both straights and flushes—see Exercise 23.) [ ]

The numbers (;) are called the binomial coefficients due to their
appearance as coefficients in the nth power of a sum of two terms.

5.17. Theorem. (Binomial Theorem)

G+ =G+NE+y) G =) (:)x"y""‘
k=0

Proof: The proof interprets the process of multiplying out the factors. To
form a term in the product, we must choose x or y from each factor; some
factors contribute x, some y. The number of factors contributing x is some
integer k from O to n, and the remaining n — k factors contribute y. The
number of terms of the form x*y"* is the number of ways to choose k of
the factors to contribute x. Summing over k accounts for all the terms. B

BINOMIAL COEFFICIENTS

We next discuss interpretations, properties, and applications of the
binomial coefficients. These numbers satisfy many useful identities. We
observe first that many statements can be proved in a variety of ways.

5.18. Lemma. (:) = (n " k).

Proof: Proof 1 (counting two ways). By definition, [#] has () subsets of
size k. Another way to count selections of k elements is to count selections
of n — k elements to omit, and there are (,l ") of these.

Proof 2 (bijections). The left side counts the k-element subsets of
[n], the right side counts the n — k-element subsets, and the operation of
“complementation” establishes a bijection between the two collections.
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Proof 3 (arithmetic). Having computed (;) = k,—(n"l—k), (Theorem 5.13),
we observe that the formula is unchanged by switching k and n — k. ]

We include counting arguments as another weapon in our arsenal of
proof techniques. A proof that interprets a formula as the size of a finite
set is a combinatorial proof. The technique of counting two ways
allows us to establish equality between two formulas by proving that both
count the same set. We have used this idea in Remark 3.10, Example
3.15, and Corollary 4.41. Counting two ways is closely related to proving
equality of size by establishing a bijection. Combinatorial proofs may
provide more information and deeper understanding than manipulation
of formulas, but discovering them may require some cleverness.

We can phrase a combinatorial proof about binomial coefficients using
selections or using one of several alternative models. In Proposition 4.19,
we constructed a bijection (“binary encoding”) from the set of subsets of [r]
to the set of binary n-tuples. Whenever we discuss k-element subsets of
[n], we could alternatively discuss binary n-tuples with k 1s. Yet another
model interprets these as paths in the plane.

5.19. Definition. A lattice path in the plane is a path joining integer
points via steps of unit length rightward or upward. Alternatively,
it is a list of ordered pairs of integers, with each step increasing one
coordinate by 1. The length of a path is the total number of steps.

5.20. Example. Lattice paths and binary lists. Typically we start lattice
paths at the origin. Since each step increases a coordinate by 1, the length
of the walk is the sum of the coordinates of the ending point.

We can encode a path by recording in position i a 1 when the ith step
is rightward and a 0 when the ith step is upward. In a path of length n,
the final location is determined by how many steps we take to the right;
if there are k steps to the right, we reach the point (k,n — k), and the

encoding has k 1s.

0,01 (0,1,00 (1,00

Furthermore, the actual path is determined by which steps are taken
to the right. Thus the path is determined by the binary n-tuple. This es-
tablishes a one-to-one correspondence between the lattice paths reaching
(k, n — k) and the binary n-tuples with k ones. Hence the number of lat-
tice paths to (k, n — k) is (Z) The illustration below shows the number of
paths to specified points. [ ]
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5.21. Proposition. For nonnegative integers a, b, the number of lattice
paths from the origin to the point (a, b) is (":” )-

Proof: The discussions before and in Example 5.20 interpret lattice paths
from the origin to (a, b) as selections of a elements from [a + b]. [ ]

The lattice path or block-walking model suggests an inductive for-
mula for the binomial coefficients. It permits inductive proofs of identities
when a combinatorial proof doesn’t come to mind. It is sometimes called
Pascal’s Formula in honor of Blaise Pascal (1623-1662). The triangular
array of numbers in which row n consists of all the binomial coefficients
with n “on top” (starting with row 0) is called Pascal’s Triangle, though
it was known to Chinese mathematicians much earlier.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

5.22. Lemma. (Pascal’s Formula) If n > 1, then

ny (n-1 n—1
(k)‘( k )+<k_1)'

Proof: These proofs use the same idea, phrased in different models.

Proof 1. By Proposition 5.21, the number of lattice paths reaching
(k,n — k) is (;). Each path arrives at (k,n — k) from exactly one of the
points (k,n — k — 1) and (k — 1,n — k). By Proposition 5.21 again, there
are (",') paths of the first type and (;_]) paths of the second type.

Proof 2. Using the subset model, we count the k-sets in [1#]. There are
(";}) such sets not containing » and ({_}) such sets containing n.

Proof 3. (1+ x)" = (1 + x)(1+ x)"~1. Using the Binomial Theorem,
we expand both (1 + x)” and (1 + x)"! to obtain
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"~ [n “n-1 X/n-1 “A/n-1
Kk _ Kk _ k K+l
E (k>x _(1+x)E ( k )x = ( P )x + E ( k )x .
k=0 k=0 k=0 k=0

Shifting the index in the last summation yields 3";_, (;~1)x*. Since ("}) =

n

("7}) =0, wecan add (", ") to the first sum and ("}') to the second to obtain

-1
"~ (n c - n—1 n—1 i
() -2C) (o)
=0 k=0
By Corollary 3.25, the corresponding coefficients must be equal. a

If we first derived Pascal’s Formula by Proof 1 or Proof 2, we could
then use it to prove the formula for (}) by induction on n (Exercise 25).

We view n-tuples as arrangements with repetitions allowed. What
happens when we consider selections with repetitions allowed? The next
theorem permits us to solve Problem 5.3.

5.23. Theorem. With repetition allowed, there are (" tf;l) ways to select
n objects from k types. This also equals the number of nonnegative

integer solutions to x; + - - - + x; = n.

Proof: Selections are determined by how many objects are chosen of each
type. Let x; be the number chosen of type i. This establishes a one-to-
one correspondence between the selections and the nonnegative integer
solutionsto x; + -+ -+ x;, =n.

We model these solutions as arrangements of n dots and k — 1 vertical
separating bars. We represent selecting x; items of type 1 by recording x;
dots and marking the end with a bar before continuing to the next type.
Doing this for each type forms an arrangement of dots and bars. Below
we illustrate the result when x; = 5, xg = 2, x3 = 0, and x4 = 3. Since we
want x; + - - - + x, = n, we have n dots and k — 1 bars.

Given an arrangement of n dots and k — 1 bars, we can invert the
process to obtain x;; it equals the number of dots in the ith group. This
establishes a one-to-one correspondence between solutions to x; + --- +
x, = n and arrangements of n dots and k — 1 bars. These arrangements
are determined by choosing the locations for the bars in a list of length
n+k — 1, so there are ("1*]') of them. We have counted the solutions to
the equation and hence also the selections of n objects from k types. ]

This formula can also be written as ("*}™!), so care must be taken
to distinguish between the number of types and the number of elements
being selected, whatever these happened to be named in an application.
It may be safer to remember the proof than to remember the formula.
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5.24. Solution. Nonnegative Integer Solutions. New York City has about
7 million residents. Suppose that each resident has 100 coins in a jar.
Two jars are “equivalent” if they have the same number of pennies, same
number of nickels, and similarly for dimes, quarters, and half-dollars.
When x; denotes the number of coins of type i, the number of pairwise
inequivalent jars of coins is the number of solutions to x; + x5 + x3 + x4 +
x5 = 100 using nonnegative integers. By Theorem 5.23, this equals (124)
= 4,598,126. Hence some two people must have equivalent jars.

Selections with repetition also correspond to the terms in the expan-
sion of a power of a sum of several terms.

5.25. Corollary. The expansion of (3., x,-)d has (“'" 1) terms.

m-1

Proof: The terms correspond to the solutions of } |, d; =d. |

5.26. Example. Monomials in a multinomial expansion. Every mono-
mial in the expansion of (w + x + y + z)® has total degree 3. Ignoring
the coefficients, we list the monomials below. By Corollary 5.25, there

are (31’le) = 20 of these. In Chapter 9 we compute the formula for the
coefficients, called the multinomial coefficients. [ ]
wd wir w?y w?z wxy
¥ x2w x%y x%z wxz
¥ Yw yi y%z wyz
B 2w % Py ayz

Identities such as Lemma 5.18 and Pascal’s Formula can be helpful
in solving problems involving binomial coefficients. They also illustrate
combinatorial techniques of proof. We prove two more.

5.27. Lemma. (The Chairperson Identity)
n n-1
) =n(:21)
Proof: Each side counts the k-person committees with a designated chair-
person that can be formed from a set of n people. On the left, we select

the committee and then select the chair from it; on the right, we select
the chair first and then fill out the rest of the committee. [ ]

Combinatorial proofs of summation formulas often consist of defining
a set whose size is the total and partitioning that set into subsets whose
sizes are the terms in the sum; this again is “counting two ways”.
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5.28. Theorem. (The Summation Identity)

> ()=

Proof: The right side counts the binary n + 1-tuples with k + 1 ones.
We can partition this set into disjoint subsets according to which posi-
tion holds the rightmost 1. The number of ways to form the list so the

rightmost 1 is in position i + 1is (). ]
k ones 1000
LI N | 1
1 positions i i+1 n+1

The block-walking version of this proof counts the paths to (k, n — k)
according to the height at which they take the last step to the right. Ex-
ercise 30 requests a proof by induction.

5.29. Solution. Summation of integer powers. Formulas for sums of pow-
ers (Problem 5.1) are easy to verify by induction but difficult to guess.
The Summation Identity provides a method that automatically generates
the answer and the proof. Notice that i = (;). Therefore, the Summation
Identity proves the summation formula for the first » natural numbers by
Srei=2r00)= ("+1) = n(n + 1)/2. End of proof! For the squares, we
rewrite i us1ng binomial coefficients. Since i2 = 2(;) +i = 2(;) + (}),

S om0 0) - o(3) (37) - e

i=0
The last step extracts the common factor n(n + 1) from the formulas for

("+") and ("}"). This approach yields ;_, f(k) for any polynomial f. ®

This method eliminates the guesswork but not the “grunt-work” to
obtain the exact formula, as we must write i* in terms of {(;) 0<j<k}to
apply the Summation Identity. Nevertheless, for all k the method shows
that Y ;_, i* is a polynomial of degree k + 1 in n. In Theorem 5.31, we

obtain the two leading terms. Calculus provides another approach; see
Example 5.46 and Exercise 17.32.

5.30. Remark. Binomial coefficients and polynomials. Viewed as a func-
tion of n, the binomial coefficient (;) = %n(n -1)---n—k+1)isa poly—
nomial of degree k. The coefﬁcient of n* is k‘,, and the coefficient of n*~
is 5 Z le( J)= (’;) T 2), When n is large, the contribution from
lower terms is relatlvely unimportant; thus we may be content with know-
ing the leading term or first two terms of a polynomial.
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In the next proof, we use O (n*) to indicate an unspecified polynomial
of degree at most k. We therefore write f(x) = 2x* + O(x*~!) to mean that
f is a polynomial of degree k with leading coefficient 2. (The “Big Oh”
notation applies more generally to describe “order of growth” of functions;
see Exercise 2.23.)

This use of the “Big Oh” notation allows us to write

ki(3) = n* — ( Jn*=1 4+ O(n*-2).

Also, subtracting a polynomial of lower degree from a polynomial f does
not change the leading term. Hence when f has degree k and g has degree
k — 1, we have f(n) — g(n) = f(n) + O(n*~1). n

5.31. Theorem. For k € N, the value of }_;_, i* is a polynomial in n with
leading term 1;n**! and next term 3n*.

Proof: (optional) By Remark 5.30, there is a polynomial g such that
k() =i —1)--- G —k+1) =it = ()i* +g0),

with g of degree at most k—2. Solving for i* yields i* = k!(})+(5)i*"1 — g(i).
We use induction on k. For k = 1, the formula };_,i = in% + in
agrees with the claim. For k > 1, we have

it =k, (k)+( ) i i = 8).
By the induction hypothesis, the term of degree j in g(i) contributes a
polynomial of degree j + 1 to >_;_; g(i). Thus }_}_, g(i) = O(n*71). Also,
the induction hypothesis yields () 3¢, i*! = (§)2n* + O(n*"1), and the
Summation Identity yields k! 37, (i) = k!(33]).

k+1
These three formulas yield Y i_; i* = k'(:ﬂ) + Elnt + o1y, We
use Lemma 5.27 to replace (}}) with Z£1(}), and next we replace (;) using

the displayed expression in Remark 5.30. We obtain
n & 'n+1 n k—l,‘ k-1
;l k'k+1(k + D) n“ 4+ 0N )
l k _ k k-1 k-1 k k-1
1(n+1)k! [n (2>n ]+ 5 " +0Mn)
1

1 k k-1
- k+1 - _ k k-1
k+1n + k+1[1 (2>]+ 2 }n + O(n* ).

To complete the induction step, we simplify the coefficient of n:

L[l_(kﬂ*k_l _2-k(k-D+Gk+Dk-1)  2+k-1 1

k+1 2 2 2k + 1) T O2k+1) 2
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PERMUTATIONS

We view a permutation on [n] both as an arrangement of [n] (the
word form) and as a bijection from [n] to [n]. The solution of Problem 5.4
involves a closer study of the word form.

5.32. Definition. The identity permutation of [n] is the identity func-
tion from [n] to [n]; its word form is 12- .. n. A transposition of two
elements in a permutation switches their positions in the word form.

5.33. Solution. In the Drummer Problem, label the couples 1,...,n. To
describe the arrangement at a given time, list for each i the index of the
woman dancing with the ith man. This list is the word form of a permu-
tation of [n]. At the last dance we reach the identity permutation.

Between two songs, two women switch, which transposes their in-
dices in the permutation. The drummers also switch. The first drummer
plays the last song if and only if we perform an even number of transposi-
tions in reaching the identity permutation from the original permutation.

To study the parity of the number of transpositions, we define a num-
ber P(f) for each permutation f of [n]). When f has word form x;, ..., x,,
let P(f) = [];.;(x; — x;). We claim that P(f) changes sign with each
transposition. Exchanging x; and x; replaces x; — x; with x; — x; in the
product. Also, x; — x; and x; — x; change sign for each i withk < i < [,
but these two changes cancel. The other factors are unchanged. Thus the
product changes sign.

When f* is the identity permutation, P(f*) is positive. For the ini-
tial permutation f;, the computation of P( f;) uses no information about
transpositions made to reach f*. No matter how f* is reached, P(fp) is
positive if and only if the number of transpositions made to reach f* is
even. Thus the first drummer is playing at the end if and only if P(fy) is
positive, and we can compute this from the initial pairing. |

The analysis of Solution 5.33 distinguishes two types of permuta-
tions. A permutation f of [n] is even when P(f) is positive, and it is odd
when P(f) is negative. This categorization has important applications in
algebra, matrix theory, and combinatorics. When n = 1, there is one even
permutation of [2] and no odd permutation. For n > 2, there are n!/2 even
permutations and n!/2 odd permutations (Exercise 52).

Every permutation can be transformed to the identity permutation
by applying transpositions. No matter what transpositions are used, an
even permutation will take an even number of transpositions to reach the
identity, while an odd permutation will take an odd number.

Problem 5.5 asks how many transpositions are needed to reach the
identity from a known permutation; we solve this in the next section. In
computer science, reaching the identity permutation via specified kinds
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of operations is called sorting. There the initial permutation is unknown
and is gradually discovered by pairwise comparison of elements.

FUNCTIONAL DIGRAPHS

Viewing a permutation as a function from a set to itself allows us to
compose permutations. Bijections have inverses; the inverse of a permu-
tation is a permutation, and their composition is the identity permutation.
Since composing bijections yields a bijection, the composition of two per-
mutations of [r] is a permutation of n. We compose permutations as
bijections but still name them by their word forms.

5.34. Example. Let f be the permutation 4123 of [4]. The function f o f
is the permutation 3412. The inverse of f is the permutation 2341.

The result of composing two permutations of [#] usually depends on
which is applied first. Let g and % be the permutations 132 and 213,

respectively. Now A o g is 231, while g o h is 312. ]
ff
1 1 g h h g
11
2 2
2 2 2 2
3 3
3 3 3
4 4 hog goh
fof

5.35. Definition. The nth iterateof f: A — A isthe function f” obtained
by composing n successive applications of f.

Precisely, we set f1 = f and f" = fo f"! forn > 1. Since composi-
tion of functions is associative (Proposition 4.32), we also have f* o f"~*
whenever 0 < k < n (see Exercise 4.41).

5.36. Example. Rotation by 90 degrees. Let f: R? — R? be the function
that rotates the plane by 90 degrees counterclockwise. The formula for
fis f(x,y) = (=y,x). The fourth iterate of f is the identity function.
When restricted to the four points a = (1,0), b = (0, 1), ¢ = (-1, 0), and
d = (0, —1), the function f defines a permutation that maps a, b, ¢, d to
b,c,d, a, respectively. |

(=y, x)—=(x,y)

|

(_x» —)’)—’—()’,'x)
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This suggests a visual way to study iteration.

5.37. Definition, The functional digraph of a function f: A — A con-
sists of a point for each element of A and, for each x € A, an arrow
from the point representing x to the point representing f(x). These
points are vertices. A list of vertices ay, ..., a; is a cycle of length
k if there is an arrow from q; to g;;; for 1 <i < k — 1 and an arrow
from a; to a;. Aloop is a cycle of length 1.

Mathematicians use “graph” for various structures with pictorial rep-
resentations; the word comes from the Greek for “picture”.

The functional digraph of f differs from the picture after Remark 1.22
by using only one copy of A. By the definition of function, each vertexin a
functional digraph is the tail of exactly one arrow. The function is injective
if every vertex is the head of at most one arrow, and it is surjective if every
vertex is the head of at least one arrow. A function from a set to itself has
a fixed point if and only if its functional digraph has a loop.

5.38. Example. The functional digraph for the Penny Problem. In the
Penny Problem (Application 1.14), we defined a function on the set of
nondecreasing lists of positive integers. We proved that the fixed points
of this function are the lists of the form 12--.n.

Since the function does not change the total number of pennies, we
can study it on the subset S, of lists with sum n. Below we illustrate the
resulting functional digraph when n = 5. There is no fixed point among
lists with sum 5, and thus the functional digraph has no loop. It does
have a cycle of length 3. [ |

11111 5 122

14 23

1112 113

The functional digraph makes it easy to study what happens when
we repeatedly compose a function with itself. In Example 5.38 we always
reach the cycle of length 3.

The 2-line form for a permutation f of [r] lists [#] in order on the
top line and the corresponding elements on the bottom line; thus it lists
the pairs {(x, f(x): x € [n]}. For example, (i g g ‘:) is the 2-line form of the
permutation with word form 4 3 2 1. One advantage of the 2-line form is
that it allows us to describe permutations of sets other than [n].
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5.39. Example. The functional digraph of a permutation. Consider the
permutation f : [9] — [9] with 2-line form (j 2 Bas o g 2) Its visual
presentation using the model in Remark 1.22 appears on the left below.
On the right we draw the functional digraph. In the functional digraph
of a permutation, each vertex is the tail of one arrow and is the head of
one arrow, and thus the arrows group into cycles. We completely spec-
ify a permutation by its cycle description, which lists the cycles of
elements formed by iteration. In this example the cycle description is
(789)(4)(265)(13). n

The cycle description of a permutation is an important tool for ana-
lyzing its structure. We use it to solve Problem 5.5.

5.40. Example. Consider the permutation f with word form 23416785

and 2-line form (; g 3 ‘; g g g g) The functional digraph appears below with

solid arrows; the cycle description is (1234)(5678). Transposing 3 and 5
in the word form yields f’ with 2-line form (; : 2 ‘i g g g g) The functional
digraph of f’ appears below with dashed arrows; the cycle description is

(12567834), a single cycle. Transposing 3 and 5 again returns f' to f. &
1 2 5 6 1

> > - —-0-->--C-->--9
]
]

\ i ! 1 ) Y
- - Ib--<---0--<---0--<———0l
4 3 8 7 4 3 8 7

5.41. Solution. The number of transpositions needed to sort the word
form of a permutation of [n] is n — k, where k is the number of cycles in its
cycle description.

We claim that transposing two elements lying on distinct cycles com-
bines their elements into a single cycle, while transposing two elements
in the same cycle splits it into two cycles. When f(i) = x and f(j) =y,
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transposing x and y yields f’ with f'(i) = y and f'(j) = x; elsewhere f
and f’ agree. If x and y are in distinct cycles x---i and y--- j of f, then
the transposition yields the cycle x ---i y---j in f’. Other cycles are un-
changed. If x and y are in the same cycle ---ix---jy---of f, then f' has
distinct cycles x--- j and y - - - i on these elements.

By this claim, each transposition changes the number of cycles by
one—up if the transposed elements were on the same cycle, otherwise
down. The identity permutation consists of n cycles of length 1. Thus a
permutation with k cycles needs at least n — k transpositions to reach the
identity. Furthermore, the identity can be reached in n — k steps, because
when there are fewer than n cycles we can find two elements on the same
cycle and transpose them to increase the number of cycles. ]

HOW TO APPROACH PROBLEMS

Combinatorial arguments are often simple to follow but hard to pro-
duce. Often it is easier to find a proof by induction or algebraic manip-
ulation of formulas, but combinatorial proofs usually provide more infor-
mation about the underlying structure of the problem. After establishing
a bijection, one can study the images of subsets to obtain more detailed
identities. Here we emphasize the basic techniques.

1) Understand the distinction between cases and stages to apply the
rules of sum and product.

2) Interpret formulas for natural numbers as sizes of sets using geo-
metric or combinatorial models.

3) Prove equalities by counting a set in two ways; a sum can be inter-
preted as counting the subsets in a partition of a set.

4) When lacking a combinatorial proof, consider established identi-
ties, induction, or other methods.

The rules of sum and product.

In applying these techniques, pay attention to whether order mat-
ters. When picking three cards from one suit and one from each of two
others, picking the suits successively as 4(133)3(113)2(113) counts all hands
twice, because the order of picking the suits for the last two cards does
not matter.

Not every counting problem can be solved by building a set in succes-
sive stages. Although the classical models emphasize the rule of product,
often the number of ways to do a particular step depends depends on
how the previous steps were done. When this happens, we must consider
cases. The consideration of cases is an application of the rule of sum, and
within each case we hope to use the rule of product.
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5.42. Example. How many ways are there to label the four corners of a
square with roman letters such that adjacent corners get different letters?
We try to build labelings in stages. There are 26 ways to label the
top left corner. Whatever we choose, avoiding that label on the top right
leaves 25 choices. Again we have 25 choices on the bottom right. On the
lower left corner we must avoid both the label of the top left and bottom
right, so we would like to multiply by 24 to get 26 - 25 - 25 - 24.
Unfortunately, we actually have 25 choices available at the last step
if the top left and bottom right received the same color. Thus the simple
rule of product does not work. After the first two steps, there are 24 ways
to perform the third step so that the first three positions have distinct
labels, and one way to do it so that it agrees with the first color. Thus a
correct computation is 26 - 25-24 - 24 + 26 - 25 . 1 - 25. ]

Cases and subcases can become very complex. We try to organize
arguments to avoid cases where possible, taking advantage of symmetry
and the rule of product.

Interpreting formulas as sizes of sets.

An expression like k" involving natural number exponentiation can
be interpreted combinatorially using the set of k-ary n-tuples or geomet-
rically using an n-dimensional grid of dots.

5.43. Example. Consider m? = m(m — 1) + m. Algebraically, we apply the
distributive law. Geometrically, we partition an m-by-m square; deleting
one row leaves an m-by-(m — 1) rectangle, so both sides of the identity count
the dots. Combinatorially, we can interpret m? as the number of ordered
pairs (i, j) from [m]; there are m(m — 1) with i # jand m withi = j. ®m

We can interpret n! using permutations. We can interpret (:) as k-
element subsets of [r], binary n-tuples with k 1s, lattice paths from the
origin to (k, n —k), etc. We can interpret a product of two terms as counting
ordered pairs or counting a two-stage process. For example, in Lemma
5.27 we interpret k(;) as the number of ways to form a committee size
k from n people and then designate a chairperson. The quantity n!(})
could represent ordered pairs consisting of a permutation of [#] and a
designation of k special positions in the permutation.

A combinatorial proof that a divides b can be given by grouping a set
of size b into a sets of equal size or into sets of size a. This is the essence
of the multiple counting argument used to derive the formula for (Z)

5.44. Example. k — 1 divides k" — 1. We already have an algebraic proof
of this using the geometric sum: k» —1 = (k — 1) Y7~ k. Now we present
a combinatorial proof.
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Let B=1{0,1,....k —1}. The set B" has size k", but we only want a
set of size k" — 1, so we discard the n-tuple that is all 0 to obtain a set S of
size k" — 1. Each n-tuple in S has a leftmost nonzero value; let A; consist
of those where that value is i.

If|A;| = |A;| wheni # j, then we have partitioned S into k — 1 sets of
equal size, which proves that k— 1 divides | S| = k* — 1. To prove that |A;| =
|A;|, we define a bijection from A; to A; by changing the leftmost nonzero
element of each n-tuple in A; from i to j. We illustrate S when (k, n) =
(5, 2), grouped by these classes, with columns indicating corresponding
elements under the bijection. |

A; 01 10 11 12 13 14
Az 02 20 21 22 23 24
Az 03 30 31 32 33 34
Ay 04 40 41 42 43 44

Counting two ways.

A familiar instance of counting two ways is the technique of inter-
changing the order of summation in a double summation: ;3. f(i, j) =
>j 2_; f(i. j). Here the summands are identified by ordered pairs, and we
have the option of grouping the terms by the first index or by the second.

The proof of the Chairperson Identity (Lemma 5.27) is essentially
of this type. We interpret k(}) as a set formed by a two-step procedure,
choosing a subset and distinguishing one element. To prove the identity,
we counted the same set by performing the two steps of the construction
in the other order, choosing the distinguished element first.

Summation formulas may require more delicate arguments. We are
told a formula for the value of the sum, or perhaps we guess a formula
from computations with small examples. Usually we then define a set
whose size is this formula. The remainder of the proof consists of devising
a way to cut this set into pieces so that the sizes of the pieces correspond
to terms in the sum; see Theorem 5.28.

In Exercise 41, for example, the value of the sum is (3), so we nat-
urally consider the set of triples from [n]. How can we cut this set into
pieces so that the number of ways to form a triple in the ith piece is
(i — 1)(n — i)? Exercise 40 is similar and easier. In Exercise 42, we con-
sider the selections of k elements from a set of size m + n, and the form of
the summands makes it rather easy to identify which ways of selecting &
elements should be in the ith piece.

Other techniques.

Besides combinatorial arguments, techniques such as induction, al-
gebraic manipulation, properties of polynomials, or even calculus may
work. For example, we have shown combinatorially that [n] has as many
odd subsets as even subsets, but induction also easily proves this.
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The results of earlier combinatorial arguments may also help; iden-
tities may permit substitutions that simplify computations.

5.45. Example. Suppose we want to evaluate ) ;_o k(;). From the Chair-
person Identity, we know that this equalsn ) ;_, (:::) The nonzero terms
in the new sum count the subsets of [n — 1], grouped by their size. Hence
the sum is n2"~!. Exercise 39 asks for a direct combinatorial proof. |

5.46. Example. Calculus quickly yields the leading term in Theorem
5.31. The interpretation of definite integrals using area (see Chapter
17) yields Z}‘;lli"k = Joxkdx < Yr_ i*. With ff x*dx = L3, we obtain
;(';—"L; <Y!,i*< % + n*. This yields the leading term and suggests that
n*/2 might be the next. Exercise 17.32 uses calculus to prove it. [ |

EXERCISES

In these problems, » denotes a positive integer. The phrase “count the” means
“determine the number of” and requires justification of the answer.

5.1. (=) When rolling » dice, what is the probability that the sum of the numbers
obtained is even?

5.2. (—) For each integer k between 2 and 12, find the probability of obtaining the
total k when rolling two fair dice (see Example 5.14).

5.3. (—) Many games involve rolling two dice with sides numbered 1 through 6.
Explain simply why x and 14 — x are equally likely to be the sum of the numbers
facing up on the two dice.

5.4. () Aword is a string of letters from an alphabet. How many words of length
I can be formed from an alphabet of size m? How many can be formed in which
each letter is used at most once?

5.5. (—) Given n married couples, how many ways are there to form pairs consist-
ing of one man and one woman who are not married to each other?

5.6. (—) Count the bijections from A to B, given that |A| = |B| =n.

5.7. (—) How many ways are there to pick two cards from a standard 52-card deck
such that the first card is a spade and the second card is not an Ace?

5.8. (—) Determine the coefficient of x*y® in the expansion of (x + y)°.
[ ] [ ] [ ] [ ] [ ]
5.9. Compute the probability that a random five-card hand has the following.

a) At least three cards with the same rank.
b) At least two cards with the same rank.

5.10. A fair coin is flipped exactly 2n times. Compute the probability of obtaining
exactly n heads. Evaluate the formula for n = 10.
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5.11. The following problem appeared on a statewide exam for grade 10 in Califor-
nia. “A game involves two cubes with sides numbered 1 through 6. After throwing
the two cubes, the smaller number is subtracted from the larger number to find
the difference. If a player throws the cubes many times, what difference will prob-
ably occur most often? Provide a diagram and written explanation that you could
use to explain to a friend.”

5.12. We roll a fair six-sided die exactly three times. Determine the probability
that the sum of the values rolled equals eleven.

5.13. We roll a fair six-sided die exactly four times. For k € {0, 1, 2, 3, 4}, deter-
mine the probability that we roll a six exactly k times. Check your answer by
verifying that these probabilities sum to one.

5.14. Consider a dial having a pointer that is equally likely to point to each of
n regions numbered 1, 2,...,n. When we spin the dial three times, what is the
probability that the sum of the selected numbers is n?

5.15. (—) Use Corollary 4.41 to prove that the size of the union of k pairwise
disjoint finite sets is the sum of their sizes.

5.16. Use the rule of sum to prove the rule of product. (Hint: Use induction on
the number k of steps used to form elements of the set T being counted, after
expressing the elements of T as k-tuples.)

5.17. Suppose that n!+m! = k!, wheren, m, k € N. Prove that (n,m, k) = (1, 1, 2).

5.18. Count the sets of six cards from a standard deck of 52 cards that have at
least one card in every suit.

5.19. (!) There are 999,999 natural numbers less than one million. For 1 <k < 6,
determine how many of these have k distinct digits in their decimal representa-
tions. Leading zeros count; treat 111 as 000111 and count it for k = 2.

5.20. (!) Prove that (n® — 5n% + 4n)/120 is an integer for all n € N.

5.21. Count the rectangles of all sizes formed using segments in a grid with m
horizontal lines and n vertical lines. In the picture below, m = 4 and n = 5.

5.22. Let P be an n-sided polygon in the plane such that every segment joining
pairs of vertices of P lies inside P; such segments are “diagonals” of P. Count the
pairs of diagonals of P that cross.

5.23. In terms of binomial coefficients, count the (five-card) poker hands having
a) One pair (two cards of equal rank and no others of equal rank).
b) Full house (two cards of equal rank and three cards of another rank).
¢) Straight flush (five consecutive cards from the same suit).

5.24. (!) A bridge hand consists of 13 cards from a standard 52-card deck. Its
distribution is the list in nonincreasing order of the number of cards in each suit.
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Thus 5440 denotes a hand with five cards in one suit and four cards in each of two
others. List the distributions, find their probabilities, and rank them. Explain
intuitively why 4333 ranks so low.

5.25. Use Pascal’s Formula to prove by induction on n that (:) = #ik), Assume
that (g) = 1 and that (';) =0whenk <Qork > n.

5.26. Use Pascal’s Formula to prove the Binomial Theorem by induction on ».

5.27. Exercise 4.21 proves combinatorially that [n] has exactly as many subsets
with even size as subsets with odd size. Use the Binomial Theorem to give another
proof. Does the conclusion remain true when n = 0?

5.28. Count the solutions in nonnegative integers x;, ..., x, tox; + -+ x <n.
5.29. Count the solutions in positive integers x;, ..., x; tox; + -+ -+ x, = n.
5.30. Prove by induction that ), , (}) = (;*}) for integers k,n > 0.

5.31. (!) Count the ways to group 2n distinct people into pairs. (The answer is 1
when n =1 and is 3 whenn =2))

5.32. By counting a set of dots in two different ways, give a combinatorial proof
that n? = 2(3) + n.
5.33. Summing the cubes.

a) Prove directly that m® = 6(’;) +6(3) +m.

b) Use part (a) to prove that ) __, i® = (2%2)2 (without using induction).

¢) Prove part (a) by counting a set in two ways. (Hint: Count the ordered
triples that can be formed from (m].)

5.34. Use the Summation Identity to count the cubes of all integers sizes formed
by an n by n by n assembly of unit cubes.

5.35. Consider a track meet with k" contestants. In each round, the remaining
contestants are placed in groups of size k. The winner in each group advances to
the next round.

a) Use this to give another combinatorial proof that k — 1 divides k" — 1.

b) How many races are run in the entire competition?

5.36. Let x be an element of a set A of size 2n. Among the n-element subsets of

A, count those containing x and those omitting x. Conclude that (*') = 2(*7}).

5.37. (1) By counting a set in two ways, prove that (Z)(’j‘) = ('l') (;':j)
. . . . .
In Exercises 38—45, prove each summation formula by counting a set in two ways.
5.38. Y  2t1=2"_1.
5.39. Y _ok(;) =n2"L.
540. Y71 -1 = ().

5AL () Y G — D —i)= ().




Exercises 121

5.42. z:'(:o (T) (kii) = (m;r n)'
843. 3, (707 = (o)

5.44. Yo, (™Y = (") (Hint: Use selections with repetition.)

5.45. ), (1 > scim |A N Bl =n4""1. (Hint: Consider the ordered triples (x, A, B)
such that A, B C [#] and x € AN B; count this set in two ways.)

5.46. (+) Evaluate nglnl [Les /i

5.47. () Consider f,: N - Ndefined by fn(n) = Y, (;). Prove that £, (n) = 2"
when n < m. Find an n such that f,(n) # 2". (Hint: Count subsets.)

5.48. Count the ways to choose distinct subsets Ay, Ay, ..., A, of [n] such that
Ao C Ay C -+ C A,. What happens if repetitions are allowed in the list?

5.49. (—) Determine the parity and the inverse for each of the following permu-
tations of [9].
a) 987654321 b) 135792468 c) 259148637

5.50. Consider three covered bins containing apples, oranges, and a mixture of
apples and oranges, respectively. The three bins have labels Apples, Oranges, and
Apples/Oranges, but the labels have been moved so that all the labels are wrong.
We are allowed to reach into one bin and select one piece of fruit (without seeing
the rest). Prove that by selecting the right bin to sample, we can determine the
correct labeling of the bins. Explain how this relates to permutations.

5.51. Suppose that Problem 5.4 is changed by having three drummers who rotate.
Prove that the final drummer cannot be determined from the initial permutation.

5.52. For n > 1, prove that the number of even permutations of [n] equals the
number of odd permutations of [2]. (Hint: Establish a one-to-one correspondence.)

5.583. Let s(f) be the minimum number of transpositions needed to transform the
permutation f to the identity permutation. Without considering cycle structure,
give a direct procedure to sort a permutation using at most n — 1 permutations.
Prove that the permutationnn—1-- - 1 requires at least n/2 transpositions to sort.

5.54. Let s*(f) be the minimum number of transpositions of adjacent elements
needed to transform the permutation f to the identity permutation. Prove that
the maximum value of s*(f) over permutations of [n] is (;) Explain how to deter-
mine s*(f) by examining f.

5.565. (+) Let A, be the set of permutations of [n]. Let B, be the set of n-tuples
(b1,...,b,) such that 1 < b; <i for each i € [n]. Construct a bijection from A, to
B,. (Hint: Use induction on n, employing a bijection from A,_; to B,_; to construct
a bijection from A, to B,. Below we illustrate this process for n = 3.)

As 321 231 213 312 132 123
Bs 111 112 113 121 122 123

5.56. Use induction to determine the positive integers n such that n! > 2". Give
a combinatorial proof that n! > 2" — 1 — n for all n.
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5.57. For n € N, find and prove a formula for ) ,_ k - k. (Comment: There are
several proofs, including a combinatorial proof like that of Theorem 5.28.)

5.58. How many permutations of [4] have no fixed point? How many permuta-
tions of [5] have no fixed point?

5.59. For f: A—> Aandn € N, let f* be defined by f! = f and f" = f o f*! for
n > 1. Let n and k be natural numbers with k < n. Prove that f* = f* o f*,

5.60. Let S, be the set of nondecreasing lists summing to n. Let f: S, — S, be the
function defined on S, by the operation in the Penny Problem (Application 1.14).
a) Draw the functional digraph of f when n = 6.
b) Determine all values of n such that f is injective. Determine all values of
n such that f is surjective.

5.61. (+) Let a, b be nonzero real numbers, and define f: R — R by f(x) =
1/(ax + b) for x # —b/a and f(—b/a) = (—1/b) — (b/a). Determine the set of
ordered pairs (a, b) such that the functional digraph of f has a 3-cycle. Solve the

analogous problem when f(x) = 234 and ad # bc.

5.62. A partition of the integer » is a nonincreasing list of positive integers that
sum to n. For example, the partitions of 4 are 4, 31, 22, 211, 1111, The elements
of the list are the “parts” of the partition.

a) List the partitions of 6.

b) Prove that the number of partitions of n with k parts equals the number of
partitions of n with largest part k. (Hint: View the parts as rows of dots.)

5.63. (+) By establishing a bijection, prove that the number of partitions of » into
distinct parts equals the number of partitions of n into odd parts. For example,
the partitions of 4 into distinct parts are 4 and 31, and the partitions of 4 into odd
parts are 31 and 1111. (Hint: Consider Proposition 3.32.)

5.64. Let n and k be natural numbers. Prove that there is exactly one choice of
integers my, ..., m; such that

05m1<m2<---<mkandn=("'1‘)+("'22)+---+(",:*).

(Hint: Observe that (',:') = zk m=i ) Comment: This is called the k-nomial

representation of n, by analogy';vli “éh'e g-ary representation.)
5.85. (+) The goal of this problem is to determine which polynomials p with ra-
tional coefficients have the property that p(n) € Z if n € Z. Let I be the set of
polynomials with this property. Recall that the sum p + g of two functions p, g on
a set S is the function % such that #(x) = p(x) + ¢(x). Similarly, the scalar multi-
ple n - p is the function A such that A(x) = n - p(x).

a) Show thatif p,ge I andneZ,thenp+gelandn-pel.

b) Show that p; € I, where p;(x) = (;‘), and that Z’;=0 n; (’1‘) € I for {n;} C Z.

c) Let f be a polynomial of degree k with rational coefficients. Prove that f
can be expressed as f(x) = Z’;=0 b; (’J‘), where the b;’s are rational. (Hint: One
way to prove this uses induction on the degree of the polynomial.)

d) Prove that f € I if and only if f(x) = Zf‘=o b; (’J‘), where the b;’s are inte-

gers. (Hint: Evaluate f at the integers in the set {0, ..., k). Note that (J) = 1, by
our convention that 0! = 1.)




Chapter 6
Divisibility

Since ancient times, people have known that one cannot always sep-
arate n objects into k equal piles; this is possible only when n is divisible
by k. In this chapter we study divisibility properties of the integers.

6.1. Definition. If a,b € Z with b # 0, and a = mb for some integer m,
then q is divisible by b, and b divides a (written as b|a). We call b
a divisor or factor of a. A natural number other than 1 is prime if
its only positive factors are itself and 1.

The first few primes are 2, 3, 5, 7, 11. We will prove that every natural
number has a unique factorization into primes. To ensure uniqueness, we
must declare that the number 1 is not prime. We will also study integer
solutions to linear equations and solve the following problems.

6.2. Problem. How can we find the greatest common divisor of two large
numbers without factoring them? ]

6.3. Problem. The Dart Board Problem. Suppose a dart board has re-
gions with values a and b, where ¢ and b are natural numbers having no
common divisor other than 1. What is the largest integer & that cannot
be achieved by summing the values of thrown darts? We seek k such that
ma+nb = k has no solutions in nonnegative integers m, n, but ma+nb = j
does have such a solution whenever j is an integer larger than %. ]

(a) b

123
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FACTORS AND FACTORIZATION

6.4. Definition. Integers a and b are relatively prime when they have
no common factor greater than 1. When m and n are integers, the
number ma + nb is an integer combination of a and b.

The term “relatively prime” does not mean “somewhat prime”; it
means “prime in relation to each other”. Our first lemma allows us to
express 1 as an integer combination of relatively prime integers.

6.5. Lemma. If a and b are relatively prime, then there exist integers m
and n such that ma + nb = 1.

Proof: When |a| = |b| or when b = 0, the numbers are not relatively
prime, unless |a| = 1, in which case the conclusion holds with (m,n) =
(a, 0). We may thus assume that |a| > |b|. Since multiplying by —1 does
not change the common factors, and since m, n may be positive or negative,
we may assume also that ¢ and b are nonnegative. We prove this case
using strong induction on a + b. We have already proved the basis step,
wherea + b =1.

For the induction step, suppose that a + » > 2. By symmetry, we may
assume that a > b. We have considered the case » = 0. When b > 0,
we will apply the induction hypothesis to the integers » and a — b. These
integers are positive and have sum less than a+5. They also are relatively
prime, since every common divisor of b and a — b also divisor of b and a.

Hence we may apply the induction hypothesis to b and a —b, obtaining
integers m’, n’ such that m'b + n'(a — b) = 1. The crucial computation
rewrites this as n‘a + (im’' — n’)b = 1. Settingm = n’ and n = m’ — n’ now
yields the desired integer combination of a and b. ]

6.6. Proposition. If a and b are relatively prime and a divides ¢gb, then
a divides ¢.

Proof: Since a, b are relatively prime, Lemma 6.5 provides integers m, n

such that 1 = ma + nb. Thus g = maq + nbq = mqa + nqb. Since a divides

each term on the right, a must also divide their sum, q. |

6.7. Proposition. If a prime p divides a product of k integers, then p
divides at least one of the factors.

Proof: We use induction on k. The statement is trivial when k = 1. For
k > 2, let by, ..., b, be k integers whose product is divisible by p, and let
n =[]} bi. Thus p divides nb;. If p divides b;, then the claim holds.
Otherwise, since p is prime, p and b, are relatively prime. Now Propo-
sition 6.6 implies that p divides n. By applying the induction hypothesis
to n, we conclude that p divides one of {b,, ..., bi_1}. [ |
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6.8. Definition. A prime factorization of n expresses n as a product of
powers of distinct primes; the exponent on each prime is its multi-
plicity. We write a prime factorization of n as n = ﬂf=1 pit.

For example, we write 243152 as a prime factorization of 1200. A
prime that does not divide » has multiplicity 0 in every factorization of n.
The next theorem is the fundamental result about factorization.

6.9. Theorem. (Fundamental Theorem of Arithmetic) Every positive in-
teger n has a prime factorization, which is unique except for reorder-
ings of the factors.

Proof: We use strong induction on n. For n = 1, there are no prime
factors. By convention, the product of the integers in an empty set is the
multiplicative identity 1, so the basis step holds.

For the induction step, consider » > 1. Let S be the set of integers
larger than 1 that divide n; this is nonempty, since n € S. By the Well-
Ordering Property, S has a smallest elemest p. Furthermore, p is prime;
otherwise, p has a smaller prime factor that also divides n.

By Proposition 6.7, p appears in every list of primes (repetition al-
lowed) whose product is n. Therefore, every prime factorization of n con-
sists of p and a prime factorization of n/p. By the induction hypothesis,
n/p has a unique prime factorization. Hence there is exactly one prime
factorization of n, obtained by adding one to the multiplicity of p in the
unique prime factorization of n/p. ]

6.10. Corollary. If a, b are relatively prime and both divide n, then ab|n.
Proof: Exercise 28. ]

When integers ¢ and b are not relatively prime, they have a common
divisor larger than 1. Often we need to know the largest such divisor.

6.11. Definition. Given integers a, b not both 0, the greatest common
divisor gcd(a, b) is the largest natural number that divides both a
and b. By convention, ged(0, 0) = 0.

If d = ged(a, b) # 0, then a/d and b/d are relatively prime. This
enables us to describe all integer combinations of ¢ and b.

6.12. Theorem. The set of integer combinations of a and b is the set of
multiples of ged(a, b).

Proof: Let d = ged(a, b). The set of integer combinations of ¢ and b is
S ={ra+sb: r,s € Z}. Let T denote the set of multiples of d.

We first prove § C T. Since d divides both a and b, there are integers
k and [ such that a = kd and b = Id. The distributive law now yields
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ma + nb = mkd + nld = (mk + nl)d, and thus d also divides ma + nb. Since
this holds for every integer combination, we have S C T.

To prove T C §, we express each multiple of d as an integer combi-
nation of a and b. Since the integers a/d and b/d are relatively prime, by
Lemma 6.5 there exist integers m, n such that m(a/d) + n(b/d) = 1. Thus
ma +nb =d. For k € Z, we now have (mk)a + (nk)b =kd. ThusT C S. 1

THE EUCLIDEAN ALGORITHM

Our applications of common divisors have been based on knowing the
greatest common divisor. For two large numbers, the greatest common
divisor is not immediately obvious; we need a procedure for computing it.
We also want to know the integer combination m, n that yields ma + nb =
d, where d = ged(a, b). There is an efficient algorithm based on the idea
underlying the proof of Lemma 6.5. (An algorithm is a procedure for
performing a computation or construction.)

6.13. Proposition. If a, b, k are integers, then ged(a, b) = ged(a — kb, b).

Proof: By the distributive law, every integer dividing a and b must also
divide a — kb. Similarly, every integer dividing (¢ — kb) and b must also
divide a. Thus d is a common divisor of @ and b if and only if 4 is a common
divisor of a — kb and b, and hence ged(a, b) = ged(a — kb, b). [ ]

When k = 1, Proposition 6.13 allows us to subtract a smaller number
from a larger number without changing the ged. Doing this repeatedly
will lead us to the ged. If one number has 10 digits and the other has
100 digits, then we would have to do many subtractions before making
much progress. We can speed up the procedure by performing many sub-
tractions at once, as suggested by the “4” in Proposition 6.13. Finding the
right number of subtractions is the role of division.

6.14. Proposition. If ¢ and b are integers with b # 0, then there is a
unique integer pair k, r such thata =kb+rand 0 <r < |b| — 1.

Proof: (Exercise 16). [ ]

The process of obtaining k& and r in Proposition 6.14 is the Division
Algorithm. The resulting r is the remainder of ¢ under division by b; the
remainder is 0 if and only if a is divisible by b. To express k, we define the
floor of a real number x, written | x|, tobe max{z € Z: z < x}. Whena, b >
0, we have k = [a/b]. The ceiling of x, written [x], is min{z € Z: z > x}.

We next describe an algorithm for computing greatest common divi-
sors. This solves Problem 6.2. Exercise 12.26 considers the efficiency of
the algorithm. Exercise 43 considers a similar algorithm.
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6.15. Algorithm. (The Euclidean Algorithm)
INPUT: A pair of nonnegative integers, not both 0.
OUTPUT: The greatest common divisor of the input pair.
INITIALIZATION: Set the current pair to be the input pair.
ITERATION: If one element of the current pair is 0, then report the
other element as the output, and stop. Otherwise, replace the maximum
element of the current pair with its remainder upon division by the other
element, and repeat using this new pair as the current pair.

Note that if the current pair is (n, n), then the next pair is (n, 0), after
which the algorithm reports n as the ged and stops.

We must prove that the Euclidean Algorithm terminates and correctly
reports the ged. Keeping careful track of the quotients in the divisions
also enables us to compute ged(a, b) as an integer combination of ¢ and b.
Each step of the algorithm expresses the new value as an integer combi-
nation of the previous values, so expressing the final value in terms of the
original values is a succession of substitutions.

6.16. Example. The Euclidean Algorithm and integer combinations.
When (a, b) is the current pair, the new number is the remainder in
a = kb + r, and we express the remainder in terms of the current pair as
r = a — kb. At the end we work backward, undoing the subtractions by
substitutions, to express the greatest common divisor as an integer com-
bination of the original inputs. When applied to the pair (154, 35), the
algorithm takes three steps and finds 7 as the common divisor.

(154, 35) 14=154-4-35
(35,14) 7=35-2-14
(14,7) 0=14-2.7
(7,0
7=35-2.14=35—-2(154-4-35)=-2-154+9-35 ]

6.17. Theorem. Applied to integers a, b witha > b > 0 and a # 0, the
Euclidean Algorithm reports ged(a, b) as output. Furthermore, re-
versing the substitution steps of the algorithm yields an expression
of ged(a, b) as ma + nb for some m, n € Z.

Proof: The proof is by strong induction on b, the smaller entry of the
input pair. For the basis step, we have b = 0. In this case, the output is a.
This equals ged(a, 0), and a = 1-a + 0 - 0 expresses the greatest common
divisor as an integer combination of @ and b.

For the induction step, we have a > b > 1, and we assume that the
Euclidean Algorithm computes the ged whenever the smaller input is less
than b. The result of the first step is a pair (b, ¢) with b > ¢ > 0, satisfying
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a = kb+c for some k € N. Writing ¢ = a —kb shows that c is obtained from
a by subtracting a multiple of . By Proposition 6.13, ged(a, b) = ged(b, c).

The remaining computations are the same as when applying the Eu-
clidean Algorithm with the input (b,¢). Since b > ¢ > 0, the induction
hypothesis tells us that continuing the Euclidean Algorithm with the pair
(b, ¢) yields the output (d, 0), where d = ged(b, ¢) = ged(a, b).

The induction hypothesis also tells us that reversing the substitu-
tions as in Example 6.16 expresses d as an integer combination of b and
c. Let this be d = m’b + n’c, where m’,n’ € Z. Since we have c expressed
in terms of ¢ and b as ¢ = a — kb, we can substitute to obtain

d=m'b+n'c=mb+n'(a —kb) =n'a+ (m' —n'k)b.

Thus setting m = n’ and n = (m’ —n’k) yields an expression for the greatest
common divisor as an integer combination of a and b. ]

The replacement operation used at each step in the Euclidean Algo-
rithm is a function E: § — S, where S is the set of nonnegative integer
pairs (a,b) witha > b > 0 and a # 0. The Euclidean Algorithm iter-
ates E until it produces a pair in which the second coordinate is 0. Thus
Theorem 6.17 guarantees that E"(a, b) = (ged(a, b), 0) for some n € N.

The expression of ged(a, b) as an integer combination of ¢ and b can
be used to solve linear equations in integers. An equation for which we
seek integer solutions is called a diophantine equation, in honor of
Diophantus (third century A.D.).

6.18. Example. Impossibility of solutions. The equation 6x + 15y = 79
has no solution in integers. Such a solution would express 79 as an in-
teger combination of 6 and 15. All such combinations are multiples of
ged(6, 15) = 3, but 79 is not a multiple of 3. [ |

After finding one solution to the diophantine equation ax + by = ¢,
we can easily find all solutions. We illustrate this by an example.

6.19. Example. Description of all solutions. What are the integer solu-
tions of 6x + 15y = 99? Let S denote this set. Since 99 is a multiple of
3 = ged(6, 15), Theorem 6.12 guarantees a solution. To find solutions,
we first divide the equation by this gcd to obtain the reduced equation
2x + 5y = 33; doing so does not change the set of solutions. Setting x = —2
and y = 1 produces 1 as an integer combination of the coefficients 2 and
5: 2(—2) + 5(1) = 1. Had we not seen a solution to 2x + 5y = 1, we could
have used the Euclidean Algorithm to generate one.

Multiplying the solution to the reduced equation by 33 produces the
solution (x, y) = 33-(—2, 1) = (—66, 33) in S. We can generate other solu-
tions by increasing x and decreasing y, or vice versa. We must increase 2x




The Dart Board Problem 129

and decrease 5y by the same amount. Hence this amount must be a mul-
tiple of both 2 and 5. Since 2 and 5 are relatively prime, we find all other
solutions by changing x by a multiple of 5 while we change y in the other
direction by that multiple of 2. Thus § = {(—66 + 5k,33 —2k): k€ Z}. 1

THE DART BOARD PROBLEM

Our analysis of diophantine equations allows negative integers. What
happens when we forbid negative values in the solution? The Dart Board
Problem is such a question. Its solution is also known as Sylvester’s The-
orem, for James Joseph Sylvester (1814-1897).

Let a, b, k be positive integers with a and b relatively prime. We be-
gin with a geometric argument that suggests that k = ma + nb must have
a nonnegative integer solution (m, n) when k is large. Since qa, b are rel-
atively prime, the equation k = ma + nb has integer solutions. We move
from one to the next by adding b to m and subtracting a from n. Viewed
as points in the plane, the solution pairs (m, n) lie along a line. There is a
nonnegative integer solution for k if and only if the line for k contains an
integer point in the first quadrant, which by definition is the set of points
with both coordinates nonnegative.

The lines for distinct choices of k are parallel; they are the level sets
of the function defined by f(m, n) = ma + nb. Below we sketch these lines
for (a,b) = (3,5) and k € {1,2,4,7}. These k are the positive integers
not expressible as nonnegative integer combinations of a and b. The dots
indicate the integer points closest to the first quadrant on these lines. As
k increases, the line crosses more of the first quadrant. Since the integer
points have the same spacing on each line, making & large guarantees a
solution. In terms of a and b, we ask how large k must be to guarantee
the existence of a nonnegative integer solution.
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6.20. Solution. The Dart Board Problem. For relatively prime positive
integers a and b, we prove that ab—a —b is the largest integer not express-
ible as a nonnegative integer combination of a and b. Call k achievable if
k = ma + nb has a nonnegative integer solution. We prove thatab—a —b
is not achievable and that every larger number is achievable.

First we prove that ab — a — b is not achievable, by the method of
contradiction. If ab — a — b is achievable, then ab —a — b = ma + nb for
some nonnegative integers m, n. Thus ab = (m + 1)a + (n + 1)b. Since a
and b are relatively prime, this implies that a divides (n + 1) and that b
divides (m + 1). Since m,n > 0, this in turn implies that n + 1 > a and
m + 1 > b. These inequalities yield the contradiction

ab=m+ 1)a+ (n+ 1)b > 2ab.

Next, we prove “k¢ > ab —a — b = k is achievable” by proving the
contrapositive: “k not achievable => k < ab — a — b”. Suppose that & is
not achievable. Because gcd(a, b) = 1, we can find integers r, s such that
1 = ra + sb. Multiplying the equation by k yields k = (kr)a + (ks)b; this is
an integer solution to k = ma + nb, but one coefficient is negative. Adding
b to m and subtracting a from n produces another integer solution to the
equation k = ma + nb. Since k is not achievable, there are no integer solu-
tions in the first quadrant. Hence there are consecutive integer solutions
with (m’, n') in the second quadrant and (m’ + b, n’ — a) in the fourth quad-
rant. Since these are integer solutions in these quadrants, they must
satisfy m’ < —1 and n’ — a < —1. Now we can compute

k=ma+nb<(-Da+@—-1b=ab—a-b. ]

Achievability of the numbers larger than ab —a — b can also be proved
directly. Consider the example (a, b) = (8, 10) (Exercise 3.44). Checking
successive numbers reveals that 17 is not achievable but that 18, 19, 20
are. All larger numbers are also achievable, since each larger number
exceeds one of these by a positive multiple of 3.

The crucial property is having achievable numbers with all remain-
ders under division by a. We next establish a condition for equally-spaced
numbers to have distinct remainders. This yields another solution of the
Dart Board Problem and will be applied in Chapter 7.

6.21. Theorem. When a, b are relatively prime and x € Z, the numbers
x,x+b,...,x+ {(a— 1)b have distinct remainders upon division by a.

Proof: Suppose that x + ib and x + jb have the same remainder, which
means that x +ib = ka +r and x + jb = la +r for some integers k, [, r with
0 < r < a — 1. Subtracting the equations yields (i — j)b = (k — )a. Since
a divides (k — l)a, a must also divide (i — j)b. Since a and b are relatively
prime, Proposition 6.6 implies that a must divide (i — j). Since i and j
are nonnegative integers less than a, this requires i = j. ]
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6.22. Solution. The Dart Board Problem, alternative proof. We prove
that every integer larger than ab — a — b is achievable. If such a number
x has the same remainder under division by a as a smaller achievable
number y, then also x is achievable, since we can increase the multiple of
a in ma + nb = y to achieve x.

By using m = 0 and the nonnegative values of n, the numbers in T =
{0,b,2b, ..., (a — 1)b} are achievable. By Theorem 6.21, these numbers
have different remainders under division by a. Since a < b, we have
(@ —2)b < ab —a — b, and all of these numbers are less thanab —a — b
except (a — 1)b. However, (a — 1)b — (ab —a — b) = a, so (a — 1)b is the
first number after ab — a — b in its remainder class. Thus we have proved
that every integer larger than ab — a — b has the same remainder under

division by a as a number in T that is no bigger and is achievable. [ ]
ab—a-b>
0 b 2b @-2b (@—1b <«T

MORE ON POLYNOMIALS (optional)

In this section we consider the set of polynomials in one variable as
a mathematical system in its own right. This set has many properties
analogous to those of the integers. For example, the Division Algorithm,
the Euclidean Algorithm, and unique factorization into primes all apply.

Let R[x] denote the set of polynomials in one variable, and let Z[x]
denote the subset consisting of those polynomials whose coefficients are
integers. We add and multiply polynomials in the natural way:

Y axt +) bix' = (an +by)x"
k ! n
Zakxk Zb;x' = Z (Xn: akb,,_k) x".
k ! n k=0

Since the sum and the product of two polynomials are polynomials,
and Z is closed under addition and multiplication, addition and multipli-
cation are binary operations on R[x] and on Z[x] (a binary operation on a
set S is a function from § x S to S). The constant polynomials 0 and 1 are
additive and multiplicative identities, respectively.

We use letters such as a, b, ¢, r for polynomials. Since we treat them
as elements of R[x], we usually omit the indeterminate x in the notation
for a polynomial. Recall from Corollary 3.25 that a and b are the same
object in R[x] if and only if a and b are equal as functions on R.
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6.23. Theorem. (Division Algorithm for Polynomials) If a, b € R[x], and
b # 0, then there exist unique ¢,r € R[x] such that a = ¢gb + r and
either r = 0 or deg(r) < deg(d).

Proof: For each b, we prove existence by strong induction on the degree
of a. Let m = deg(b) and n = deg(a). If n < m, then the desired conclusion
holds with ¢ = 0 and r = a. Thus the result holds whenever n < m.

For the induction step, we consider a polynomial a with degreen > m,
and we assume that the result holds for all polynomials of degree less than
n. Let a, and b,, be the leading coefficients of a and b. Let h(x) = pLx"m,
Note that #b—a has no term of degree n. We can therefore writea = hb+c,
where ¢ = 0 or deg(c) < n. If ¢ = 0, then the conclusion holds with g = A
and r = 0. Otherwise the strong induction hypothesis allows us to write
¢ = Qb + R, where deg(R) < m. Thus,

a=0b+R+hb=(Q+h)b+R.

This is the desired conclusion withg = Q +handr =R
We leave the proof of uniqueness to Exercise 58. |

6.24. Corollary. If p is a polynomial, then there is a polynomial g with
p(x) = (x — x0)q(x) + p(xo).

Proof: Apply the Division Algorithm with b(x) = x — xo. The remainder
must be a constant. Evaluating at x = x; determines the constant. [ ]

The statement and the proof of Theorem 6.23 parallel those of the
Division Algorithm on Z. The same will hold for results about greatest
common divisors.

6.25. Definition. A nonempty subset / of R[x] is an ideal if it satisfies
properties (a) and (b) below.
a)p,gelimplyp+qel.
b) p € I and r € R[x] imply that rp € 1.
An ideal 7 is a principal ideal if there exists g € Rlx] such that
I ={pg: p € Rlx]}. The polynomial g is a generator of /.

It follows from property (b) that every ideal contains 0.

6.26. Theorem. Every ideal in R[x] is a principal ideal.

Proof: If I consists of only the zero polynomial, then the result is true
with g = 0. Otherwise, let b be a nonzero polynomial in I of least degree.
Let a be an arbitrary element of /. By the Division Algorithm we can write
a = gqb + r. Either r = 0 or the degree of r is less than the degree of b.

Since a and gb both belongto I, alsor =a—gb = a+(—q)b € I. Since
b is an element of / with minimum degree, and r € I, deg(r) < deg(b) is
impossible. We conclude that r = 0, and hence a = gb.
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Thus every element of 7/ is a multiple of b. By the definition of ideal,
every multiple of b is in /. Thus I consists of all multiples of 5. ]

The notion of “ideal” extends to more general mathematical systems
called rings and integral domains. These are sets endowed with opera-
tions of addition and multiplication whose properties resemble those of
the integers Z. Within Z, for example, the set of integer combinations of
integers a and b is by definition an ideal, and Theorem 6.12 shows that
this ideal is a principal ideal with generator ged(a, b). Exercise 55 is the
analogue of Theorem 6.26 for Z; every ideal in Z consists of the multiples
of a single integer.

Givend, a € R[x], we say that d divides a or is a divisor of a if there
is a polynomial g such that dg = a. A greatest common divisor of a
and b is a polynomial divisible by every common divisor of a and b.

6.27. Theorem. If a and b are elements of R[x], then a and b have a
greatest common divisor d. Furthermore, there are polynomials s
and ¢ so that d = as + bt.

Proof: The set S of polynomials that can be written as as + bt for some
polynomials s and ¢ is an ideal. Theorem 6.26 therefore implies that S
consists of all multiples of some polynomial d. We have a,b € §, since
a = la + 0b and b = 0a + 1b. Thus each is a multiple of d.

If g divides both a and b, then since d = as +bt, also q divides d. Thus
d is a greatest common divisor of a and b. [ ]

In abstract algebra, it is proved that whenever every ideal in an in-
tegral domain is principal, every element has a unique factorization into
primes. This applies in particular to R[x], as we now show.

6.28. Definition. A polynomial u € R[x] is a unit if it is a nonzero con-
stant. A polynomial a € R[x] is reducible if it can be expressed as
a = bc with neither b nor ¢ being a unit. A nonconstant a € R[x] is
irreducible if a = bc implies that b or ¢ is a unit.

We call a nonzero constant a “unit” because it has a multiplicative
inverse in R[x] (Exercise 63). We do not consider units to be irreducible,
for the same reason that we do not consider 1 to be a prime number.

6.29. Lemma. If an irreducible polynomial p divides a product ab, then
p divides a or b.

Proof: If p doesn’t divide a, then ged(p,a) = 1. By Theorem 6.23, 1 =
sp + ta, and hence b = spb + tab. Now p divides both terms on the right
and thus also divides b. ]
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6.30. Theorem. Every nonconstant a € R[x] can be written as the prod-
uct of irreducible polynomials. The factorization is unique up to order
of the factors and multiplication of them by units.

Proof: (sketch) If a is irreducible, then the existence and uniqueness re-
sults are immediate. If a is reducible, then there exist polynomials b, ¢
with degrees smaller than a such that a = bc. A formal proof of existence
then follows either by the method of descent or by strong induction on the
degree. The uniqueness follows by strong induction and Lemma 6.29 (see
Exercise 59). ]

EXERCISES

6.1. (-) Explain why the following makes no sense: “Let n be relatively prime.”
6.2. (—) Let p be a prime number. Which integers are relatively prime to p?
6.3. (—) Determine which numbers are relatively prime to 0.

6.4. (—) Suppose that ged(a, b) = 1. Prove that ged(na, nb) = n.

6.5. (—) Let n be a natural number. What is the list of pairs produced when the
Euclidean Algorithm is applied to the input (5n, 2n)?

6.6. (—) How many steps does it take the Euclidean Algorithm to reach (1, 0)
when the input is (n + 1, n)?

6.7. (—) Is 61 an integer combination of 9 and 15? Is 61 an integer combination
of 9 and 16?

6.8. (—) For each pair below, use the Euclidean Algorithm to compute the greatest
common divisor, and express the greatest common divisor as an integer combina-
tion of the two numbers.

a) 126 and 224. b) 221 and 299.

6.9. (—) For each diophantine equation below, find all solutions, if any exist.
a) 17x + 13y = 200. ¢) 60x + 42y = 104.
b) 21x + 15y = 93. d) 588x + 231y = 63.

6.10. (—) Show that the first 10 multiples of 7 end in different digits (in base 10),
but the first 10 multiples of 8 do not. Explain the distinction.

American coins have values 1, 5, 10, 25, and 50 cents, called pennies, nickels,
dimes, quarters, and half-dollars, respectively.

6.11. (—) A person has the same (nonzero) number of each type of American coin.
The total amount she has is a whole number of dollars. Determine the smallest
such nonzero amount. Answer the same question assuming she has no pennies.
Answer the same question assuming she has no pennies and no nickels.
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6.12. (—) A parking meter contains the same number of dimes and quarters, in
total a nonzero whole number of dollars. What is the minimum number of coins?

6.13. (—) A parking meter can hold & quarters, 2k nickels, and 4k dimes. Find all
k such that the total when the meter is full is a whole number of dollars.

6.14. (—) Suppose a parking meter accepts only dimes and quarters and has twice
as many dimes as quarters. If the total amount of money is a nonzero whole
number of dollars, what is the smallest possible number of quarters?

6.15. What is the smallest number of American coins (values may repeat) suffi-
cient to make change equal to any value from 1 cent through 99 cents? Is there
only one optimal solution? What is the answer when coins can be made with any
desired value?

[ ] [ [ [ ] [ ]
6.16. For a, b € Z, prove that there is exactly one pair k,r € Zsuchthat 0 <r <
lbl—1anda =kb+r.
6.17. Prove that ged(a + b,a — b) = ged(2a, a — b) = ged(a + b, 2b).

6.18. Suppose that ged(a, b)) = 1. Does this determine ged(a?, b%)? Does this
determine ged(a, 2b)?

6.19. (!) Let n,k, j be natural numbers with n > k > j. Prove that (}) and (;') are
not relatively prime. (Hint: Use Exercise 5.37 to relate these quantities.)

6.20. By counting an appropriate geometric arrangement of points, prove that
2 Z;’: lir/q) = (p — 1)(g — 1) if p and q are relatively prime.

6.21. For x € R and k € N, prove that |—x] = — [x] and that [ =] = | £].
6.22. Find every integer k such that k > 3 and & — 2 divides 2k.

6.23. Determine the values of n such that {n, n + 2, n + 4} are all prime.

6.24. Prove that 3 divides 4" — 1, for every positive integer n. Prove that 6 divides
n® + 5n, for every positive integer .

6.25. Let (a) be a sequence such that a; = 1, a; = 1, and a,4; = a, + 24, for
n > 2. Prove that q, is divisible by 3 if and only if » is divisible by 3.

6.26. Ifn € N, prove that (n — 1)2 + n® + (n + 1)? is divisible by 9.

6.27. Let f: N x N = Nbedefined by f(x, y) = 83*~1(8y — 1). Show that f is not
surjective. Explain why this differs from Example 4.45.

6.28. Suppose that ged(a, b)) = 1 and that a|n and b|n. Prove that ab|n.

6.29. The least common multiple (lcm) of natural numbers a and b is the least
natural number divisible by both. Prove that lem(a, b) - ged(a, b) =a - b.

6.30. (!) Prove that (2n)!/(2"n!) is an odd number.

6.31. (!) Let a, b, ¢ be integers such that a% + b = 2.
a) Is it always true that at least one of {a, b} is even?
b) If ¢ is divisible by 3, prove that a and b are both divisible by 3.
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6.32. (!) Abear’s cage has two jars of jelly beans, one with x beans and the other
with y. Each jar has a lever. When a jar has at least two beans, pressing its lever
will give the bear one bean from it and move one bean from it to the other jar;
otherwise the lever has no effect. Obtain necessary and sufficient conditions on
the pair x, y so that the bear can eat all the beans except one.

6.33. Let abc be a 3-digit natural number (written in base 10). Prove that the
6-digit number abcabc has at least three distinct prime factors.

6.34. (!) Prove using contradiction that the set of prime numbers is not finite.

6.35. (!) Let n be a positive integer. Construct a set of n consecutive positive
integers that are not prime. (Hint: Determine a positive integer x such that x is
divisible by 2, x + 1 is divisible by 3, x + 2 is divisible by 4, etc.)

6.36. (!) Primes and factorials.

a) Express the exponent of prime p in the factorization of k! as a finite sum.
In particular, compute the exponent of 5 in 250!.

b) Use the answer to (a) to prove that N is divisible by k! if N is the product
of k consecutive natural numbers.

¢) Give another proof of (b) using a combinatorial argument.

6.37. (1) Let p be a prime number.

a) Prove that p divides (f) ifl<k<p-1

b) Prove that n? — n is divisible by p for every n € N. (Hint: Use the Binomial
Theorem and part (a) in a proof by induction.)

6.38. (!) Let x, y, k be nonnegative integers, with k not being a power of 2. Prove
that x* + y* is not prime. Conclude that if 2" + 1 is prime and » is not a power of
2, then »n is prime.

6.39. Prove that if 2" — 1 is prime, then n is prime. (Hint: Prove the con-
trapositive; if n is not prime, then 2" — 1 is not prime. Comment: Primes of
the form 2" — 1 are called Mersenne primes; 36 such primes are known—see
http://www.mersenne.org/2976221.htm)

6.40. (!) A natural number is perfect if it is the sum of the smaller natural
numbers that divide it; 6 and 28 are the first two perfect numbers. Prove that if
2" — 1is prime, then 2"-1(2" — 1) is perfect. (Hint: List the divisors and sum them.
Comment: Euclid conjectured that all perfect numbers have this form. This is not
known, but it is known that these are the only even perfect numbers.)

6.41. Pélya’s proof for infinitude of primes. Let a, = 22" + 1. Prove by induction
that a, divides a,, — 2 if n < m. Conclude that a, and a,, have no common factors
if n # m. Use this to prove that there are infinitely many primes. (This method
also proves that there are at least log, log, N primes less than N.)

6.42. Let n be an integer. Let f(n) denote the number of distinct digits that occur
as the last digit in the base 10 representation of the numbers n, 2n,3n, ..., 10n.
Compute f(n).

6.43. Let a and b be nonnegative integers. Prove that the following algorithm
computes ged(a, b). Each step of the algorithm replaces the current pair of num-
bers with a new pair or reports an output, according to the following rules.
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1) When one number is 0 or they are equal, stop and report the maximum of
the pair as output.

2) When both numbers are nonzero and at least one is even, divide the first
even member of the pair by 2.

3) When both numbers are odd, replace the larger one with their difference.
(Comment: This algorithm runs faster than the Euclidean Algorithm.)

6.44. Example 4.6 suggests a procedure for computing the base g representation
of a natural number n. Prove that the following inductive procedure also works,
and use it to compute the representation of 729 in base 5.

1)If1 < n < q — 1, then the base g representation of n is @y = n.

2)Ifn > q,thenlet n = kq + r, wherer € {0,...,q — 1}, and let b,,,..., b
be the base g representation of k. The base q representation of n is ap41, ..., ao,
where ap = r and a; = b;_, fori > 0.

6.45. The royal treasury has 500 7-ounce weights, 500 11-ounce weights, and a
balance scale. An envoy arrives with a bar of gold, claiming it weighs 500 ounces.
Can the treasury determine whether the envoy is lying? If so, how? What if the
weights are 6-ounce and 9-ounce weights?

6.46. (—) Find all integer solutions to 70x + 28y = 518. Determine how many
solutions have both variables positive.

6.47. Find all integer solutions to & = £ + .

6.48. Givena,b,c € Z, letd = ged(a, b), and suppose that d divides c. Prove that
the set of integer solutions to ax + by = c is nonempty. Express the set of solutions
in terms of one given solution and the parameters a, b, d.

6.49. A jar contains some pennies, some nickels, and some dimes. Suppose that
the total value of the coins in cents is s, and the total number of coins is r. Deter-
mine the smallest s that permits more than one solution for some ¢.

6.50. A “reciprocal” dart board problem.

a) Do there exist natural numbers m, n such that 7/17=1/m + 1/n?

b) (+) Let p be a prime number. For which k € N do there exist m,n € N such
thatk/p=1/m+ 1/n?

6.51. (+) The Coconuts Problem. Five suspicious sailors spend the day gathering
a pile of coconuts. Exhausted, they postpone dividing it until the next morning.
Suspicious, each decides to take his share during the night. The first sailor divides
the pile into five equal portions plus one extra coconut, which he gives to a monkey.
He takes one pile and leaves the rest in a single pile. The second sailor later does
the same; again the monkey receives one leftover coconut. The third, fourth and
fifth sailors also do this; each time a remainder of one goes to the monkey. In the
morning they split the remaining coconuts into five equal piles, and each sailor
gets his “share”. (Each knows some were taken, but none complains, since each
is guilty!) What is the smallest possible number of coconuts in the original pile?
(This problem appeared in the Saturday Evening Post on October 9, 1926.)

6.52. (+) The Postage Stamp Problem (special case). The Post Office wants to
issue stamps with two different values. Postage is one cent per ounce, and each
envelope has space for s stamps. Correctly posting a one-ounce envelope requires
that one of the stamp values be 1. The problem is to choose the other value m to
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maximize n such that all weights in [#] can be correctly posted.

a) Prove that m should be at most s + 1.

b) Prove that for each m satisfying 2 < m < s + 1, the smallest integer weight
that cannot be formed using at most s stamps of values lormis m(s +3 —m) — 1.
(Hint: Prove that this value is one less than a multiple of m.)

¢) Use part (b) to prove that the best choice of m is [s/2] + 1. (Comment: The
more general problem in which 4 different values are allowed is unsolved.)

6.53. (+) Consider cards labeled 1, ..., 2n. The cards are shuffled and dealt to
two players A and B so that each gets n of the cards. Let x be the sum of the
labels on the cards that have been played; initially, x = 0. Starting with A, play
alternates between the two players. At each play, a player adds one of his or her
remaining cards to x. The first player who makes x divisible by 2n + 1 wins. Prove
that for every deal, player B has a strategy to win. (Hint: Prove that B can always
make it impossible for A to win on the next move.)

6.54. (+) Let S be a set of three positive integers. If r, s are members, with r <5,
then r, s can be replaced with 2r and s — r. Prove that every set S of three positive
integers can be transformed by such operations into a set that contains 0. (Hint:
If x is the smallest number in S and y is the next smallest, prove that y can be
expressed as y = (2" + a)x + b, where a < 2" and b < x. Use this to prove the
claim by strong induction on the minimum value in S.)

6.55. (+) Aset S C Z is an ideal in Z if S is nonempty and satisfies 1) ifa, b € S,
thena + b€ S,and 2)ifa € S and n € Z, then na € S. Prove that every ideal in Z
is the set of multiples of a single integer. (Comment: This strengthens Theorem
6.12, showing that every ideal in Z is a principal ideal—see Definition 6.25. The
analogous result for R[x] is Theorem 6.26.)

6.56. For each pair of polynomials below, compute the greatest common divisor.
a)x2and 3x3 4+ x + 1.
b)x2+xand x3 +2x2+2x +1
¢)x®—3x—2and x3 —x —2x2 4+ 2.

6.57. (—) Show that deg(p +¢) < max(deg(p). deg(q)). Under what circumstance
does strict inequality hold?

6.58. Prove the uniqueness of the polynomials ¢, r in Theorem 6.23.
6.59. Complete the details of the proof of Theorem 6.30 using induction.

6.60. (!) Reprove Theorem 6.9 by first solving exercise 50 and then mimicking the
logic of Theorem 6.30.

6.61. (!) Consider the set of polynomials R[x, y] in two variables. Show that there
are ideals that are not principal.

6.62. Solve Exercise 6.18 when a and b are elements of R[x].
6.63. Show that if ab = 1 for a, b € R[x], then a and b are constants.
6.64. Find a polynomial in Z[x] whose factors lie in R[x] but not in Z[x].

6.65. Consider A, B, C € R with A # 0. Obtain a necessary and sufficient condi-
tion on A, B, C so that Ax? 4+ Bx + C is irreducible in R[x].




Chapter 7
Modular Arithmetic

In Chapter 6 we studied divisibility; now we study what is left af-
ter division. Parity describes the remainder when the divisor is 2; the
odd integers are those having remainder 1. Considerations of parity are
fundamental to atomic physics and computer science as well as to math-
ematics. We generalize parity by considering divisors other than 2; this
leads to many applications and to another notion of arithmetic.

7.1. Problem. How can one easily determine, from the 0s and 1s in the bi-
nary representation of a natural number, whether the number is divisible
by 3? ]

7.2, Problem, Chinese Remainder Problem. A general in ancient China
wanted to count his troops. Suppose that when his soldiers were split
into three equal groups there was one soldier left over, when split into
five equal groups there were two left over, and when split into seven equal
groups there were four left over. What is the minimum number of soldiers
that makes this possible? ]

7.3. Problem, The Newspaper Problem. A math professor cashes a check
for x dollars and y cents, but the teller inadvertently pays y dollars and
x cents instead. After the professor buys a newspaper for 50 cents, the
remaining money is twice the original value of the check. What was the
value of the check? How does the solution change if the cost of the news-
paper changes? [ ]

7.4. Problem. Primality Testing. Is is possible to prove that a number is
not prime without knowing any of its factors? ]

139
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RELATIONS

Comparison of objects is fundamental in mathematics. For example,
we can compare two real numbers by asking whether x < y, we can com-
pare two sets by asking whether A C B, and we can compare points in the
plane by asking which is closer to the origin.

Given two objects s and ¢, not necessarily of the same type, we may
ask whether they satisfy a given relationship. Let S denote the set of
objects of the first type, and let T denote the set of objects of the second
type. Some of the ordered pairs (s, ) may satisfy the relationship, and
some may not. The next definition makes this notion precise.

7.5. Definition. When § and T are sets, a relation between Sand T is a
subset of the product S x 7. A relation on S is a subset of S x S.

We usually define a relation R by stating a condition for pairs; the
relation is the set of ordered pairs satisfying the condition.

7.6. Example. Let S be the set of students and T the set of teachers in
a school. We define a relation R between S and T by letting R be the
set of ordered pairs (x, y) in § x T such that x has taken a class from y.
Each element of S or 7 may belong to many ordered pairs satisfying the
relation. ]

7.7. Example, If f: R — R, then the graph of f is a relation on R. It is
the set of ordered pairs {(x, y) € R%: y = f(x)}; each element of R is the
first coordinate in exactly one such pair.

The conditions “|x| = |y|” and “x2 + y2 < 1” also define relations on R.
These relations are not the graphs of functions. ]

7.8. Example. Parity. The condition “have the same parity” defines a
relation on the set Z. If x, y are both even or both odd, then (x, y) satisfies
this relation; otherwise it does not. [ ]

The parity relation satisfies several properties we now define. To-
gether, they yield an important type of relation.

7.9. Definition. An equivalence relation on a set S is a relation R on
S such that for all choices of distinct x, y, z € S,
a) (x, x) € R (reflexive property).
b) (x, y) € R implies (y, x) € R (symmetric property).
¢) (x,y) € Rand (y, z) € R imply (x, z) € R (transitive property).

7.10. Example. For every set S, the equality relation R = {(x,x): x €
S} is an equivalence relation on S. Echoing the notation for equality, we
often write x ~ y instead of (x, y) € R when R is an equivalence relation.
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Let S be the set of students at a college. The condition “x and y have
been in a class together” generally does not define an equivalence relation
on S. It defines a relation that is reflexive and symmetric, but it need not
be transitive. When x has been in a class with y, and y has been in a class
with z, it does not follow that x has been in a class with z.

On the other hand, the condition “x and y were born in the same
year” does define an equivalence relation on S. All three properties hold,
because each person is born in only one year. ]

7.11. Example. Order relations. The divisibility relation defined by
R = {(m, n) € N%: m|n} is not an equivalence relation. It is reflexive and
transitive, but it is not symmetric. Indeed, it is antisymmetric: (x, y) €
R and (y, x) € R together imply x = y. A relation that is reflexive, anti-
symmetric, and transitive is an order relation.

Another example of an order relation is the inclusion relation on
the set S of subsets of a set X. Forall A, B,C € S, wehave A CA,(ACB
and B C A) implies A= B,and (A € Band B C C) implies A C C. [ ]

7.12. Example. Given a function f: R? — R, we define a relation on
R? by putting p ~ g when f(p) = f(q). This relation is an equivalence
relation; two points satisfy the relation if and only if they belong to the
same level set of f. [ ]

A topographic map of a region on the surface of the earth illustrates
this. Let f(p) be the height of the point p above sea level. Points in the
same level set of f have the same height; points in different level sets
have different heights. A hiker walking in a single level set does no work
against gravity. The level sets partition the plane into subsets where an
important measurement is constant. This leads us to a general definition.

7.13. Definition. Given an equivalence relation on S, the set of elements
equivalent to x € § is the equivalence class containing x.

The equivalence classes of an equivalence relation on S form a parti-
tion of S; elements x and y belong to the same class if and only if (x, y)
satisfies the relation. The converse assertion also holds. If A4, ..., A; is
a partition of S, then the condition “x and y are in the same set in the
partition” defines an equivalence relation on S (Exercise 12).

7.14. Example. Cycles in a permutation. Let f be a permutation of a fi-
nite set A. Iterating f allows us to group the elements of A into “cycles”
under f (Example 5.39). These cycles are the equivalence classes of a nat-
ural equivalence relation on A; we put (x, y) € R when y can be obtained
from x be repeatedly applying f. ]
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CONGRUENCE

In this chapter, we focus on an equivalence relation associated with
divisibility, called “congruence”. The notions of congruence and modu-
lar arithmetic, introduced by Karl Friedrich Gauss (1777-1855), are so
fundamental that we have special terminology and notation for them.

7.15. Definition. Congruence. Given a natural number n, the integers x
and y are congruent modulo n if x — y is divisible by n. We write
this as x = y mod n. The number # is the modulus.

7.16. Theorem. For every n € N, congruence modulo » is an equivalence
relation on Z.

Proof: Reflexive property: x — x equals 0, which is divisible by ».
Symmetric property: If x = y mod n, then by definition n|(x — y).
Since y — x = —(x — y), and since n divides —m if and only if » divides m,
we also have nj(y — x), and hence y = x mod n.
Transitive property: If n|(x — y) and n|(y — z), then integers a, b exist
such that x — y = an and y — z = bn. Adding these equations yields
x —z=an+ bn = (a + b)n, so n|(x — z). Thus the relation is transitive. B

7.17. Definition. The equivalence classes of the relation “congruence
modulo n” on Z are the remainder classes or congruence classes
modulo n. The set of congruence classes is written as Z, or Z/nZ.

7.18. Remark. Remainder classes. We show that there are n remainder
classes modulo n; for 0 <r < n,therthclassin Z, is {kn+r: k € Z}. When
n = 10, the last decimal digit determines the remainder class.

By definition, a = b mod n if and only if a — b is divisible by n. The
Division Algorithm yields unique integers &, r such that ¢ = kn + r and
0 < r < n; here r is the remainder upon division by n. If a = kn + r and
b =In + s with remainders r, s € {0, ..., n — 1}, then n|(a — b) if and only
if r —s = 0. Hence a = b mod r if and only if a and » have the same
remainder “modulo »”. This justifies our description of the classes. ]

The next lemma is the property of the congruence relation that allows
us to define arithmetic with congruence classes.

7.19. Lemma. Ifa =r modnand b =s mod n,thena +b=r +smodn
anda-b=r- s modn.

Proof: Since a = r mod n and b = s mod n, there exist integers k, ! such
thata = kn +r and b = In + 5. Adding these equations yieldsa + b =
(k+Dn+ (r +s5), and thus a + b = r +s mod n. Multiplying the equations
yieldsa -b =kin? + (ks +Ir)n+r-s,andthus a- b =r - s mod n. [
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7.20. Example. Since 79 = 4 mod 5 and 23 = 3 mod 5, we can multiply
the congruence classes to obtain 79 - 23 = 12 mod 5. Since 12 = 2 mod 5,
we can further reduce this to 79 - 23 = 2 mod 5. ]

Lemma 7.19 enables us to define arithmetic on congruence classes.
The result of adding or multiplying two congruence classes will itself be
a congruence class. When the modulus » is given, we use a to denote the
congruence class containing a.

7.21. Definition. A binary operation on a set S is a function from S x §
to S. On Z,, addition is the binary operation defined by letting the
sum of the congruence classes @ and b be the class containing the
integer a + b. On Z,, multiplication is the binary operation defined
by letting the product of @ and b be the class containing the integer

a-b. Innotation,a+b=a+banda-b=a-b.

In the formulas in Definition 7.21, the operations between classes are
the operations being defined; the operations on the right are previously
known operations on integers. Lemma 7.19 guarantees that these opera-
tions on Z, are well-defined functions; when we choose integers ay, az in
the class @ and integers by, by in the class b, the numbers a; +b; and ag+bs
lie in the same congruence class, as do a; - b; and ay - b;. We can choose
any elements from the classes to perform the computation; the result is
always the same congruence class.

For this reason, we use the notation @ only when we need to emphasize
the congruence class as an object. The expression 6 +6 = 5 mod 7 is both
a statement about integers and a statement about congruence classes.
The validity of addition and multiplication with congruence classes is one
reason we use the “equality-like” notation (=) for the congruence relation.

7.22. Example. Binary arithmetic. 'We have already used arithmetic
modulo 2. The congruence classes are “even” (0 mod 2) and “odd” (1 mod
2). The addition table modulo 2 states that the sum of two integers with
the same parity is even, and the sum of two integers with opposite parity
is odd. The multiplication table says that the product of two integers is

odd if and only if they are both odd. ]
+ 01 * 01
0 01 0 00
1 10 1 01

7.23. Example. Clock arithmetic. Minutes on a clock behave like arith-
metic mod 60. If a 90-minute movie starts at “quarter-past”, then it will
end at “quarter-til”. This is independent of the hour, just as the sum of
two odd numbers is even no matter which odd numbers we use. [ ]
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7.24. Remark. Modular computation. Lemma 7.19 holds for all integers
r and s; they need not lie between 0 and n — 1. Thus when performing
arithmetic operations in which we care only about the congruence class of
the result modulo n, we may at any time replace a number by a more conve-
nient representative of its congruence class. We may write the computation
of Example 7.20 as

79.23=4-3=12=2mod 5.

Here the “ mod 5” indicates that all four expressions belong to the same
congruence class modulo 5. ]

7.25. Example. “Casting out nines”: An integer is divisible by 9 if and
only if the sum of its decimal digits is divisible by 9. Since 10 is congruent
to 1 modulo 9, every nonnegative power of 10 is also congruent to 1 modulo
9. Therefore Y ,.0a,10" = Y, 0a,1" = > oa, mod 9. This is called
“casting out nines” and was used as a check by clerks adding columns of
figures before adding machines were invented.

To check the computation of _ ¢;, let s be the sum of the digits of the
result, and for each i let b; be the sum of the digits of ¢;. If the addition is
correct, then ) b; must be congruent to s modulo 9. For example, suppose
we add the numbers 123, 456, 789 and obtain 1268. The sums of the digits
in the three numbers are 6, 15, 24, respectively, which sum to 45. The
sum of the digits of 1268 is 17. Since 17 is not congruent to 45 modulo 9,
we must have made a mistake. The correct sum is 1368. ]

7.26. Solution. Divisibility by 3. In binary representation, we write n =
36 a;2/, where each g; is 0 or 1. Thus n is divisible by 3 if and only if

0=Y74a2 =37 aj(—1) mod 3.

Since each g; is 0 or 1, n is divisible by three if and only if the number of
1s in even-indexed positions differs from the number of 1s in odd-indexed
positions by a multiple of 3.

For example, suppose n = 1010101111 in binary. Since there are
five 1s in even-indexed position and two 1s in odd-indexed positions, » is
divisible by three. In base 10, » = 687 = 3 - 229. [ ]

In arithmetic modulo n, the class 0 is an additive identity, and the
class containing —x is an additive inverse for the class containing x. The
class 1 is a multiplicative identity, but multiplicative inverses do not al-
ways exist. The nextlemma allows us to find multiplicative inverses when
they exist. It also leads to solutions of Problems 7.2-7.4.

7.27. Lemma. If a and n are relatively prime integers, then multipli-
cation by a defines a bijection from Z, — {0} to itself, equivalently,
multiplication by a permutes the nonzero congruence classes.




Applications 145

Proof: Since a and n are relatively prime, 0, a, 24, ..., (n — 1)a all have
different remainders modulo n (Theorem 6.21). Since 0 has remainder 0,
the others are nonzero. Since they are distinct, the list defines an injection
from Z, — {0} to itself. Since the set is finite, this injection is a bijection. B

7.28. Corollary. If a and n are relatively prime integers, then solutions
to ax = 1 mod n exist and lie in a single congruence class. In the
language of Z,, the class x is the multiplicative inverse of a. ]

APPLICATIONS

We use Corollary 7.28 first to present an ad hoc solution of Problem
7.2 and then to prove a theorem that provides another algorithm.

7.29. Solution. Chinese Remainder Problem. We seek a number x that
is congruent to 1 mod 3, to 2 mod 5, and to 4 mod 7. Thus x = 3n + 1 for
some integer n. Incorporating the second requirement, we have 3n + 1 =
2 mod 5, which becomes 3n = 1 mod 5. Since 3 and 5 are relatively
prime, there is a unique congruence class modulo 5 as a solution; we have
n=2mod5. Writingn =5m +2yields x =36m +2) +1=15m + 7.
Incorporating the third requirement, we have 15m + 7 = 4 mod 7.
Since 15 = 1 mod 7 and 7 = 0 mod 7, we obtain m = 4 mod 7, so that
m = Tk + 4 for some k € Z. Hence x = 15(7k + 4) + 7 = 105k + 67. The
smallest positive number (of soldiers) is 67. [ ]

This method can be combined with induction on the number of con-
gruences to prove the next theorem. We present a short proof that yields
another algorithm and avoids induction.

7.30. Theorem. (Chinese Remainder Theorem) If {n;} is a set of r nat-
ural numbers that are pairwise relatively prime, and {a;} are any r
integers, then the system of congruences x = g; mod n; has a unique
solution modulo N =[] n;.

Proof: If x and x’ are solutions, then they must be congruent modulo N.
To see this, note that x = x’ = a; mod »n; for each i, so n;|(x — x’). Since
the n;’s are relatively prime, this yields N|(x — x’), by Corollary 6.10.
Now we construct a solution. For each i, let N; = N/n;. Since n;
is relatively prime to the other moduli, ged(N;,n;) = 1. By Corollary
7.28, there is exactly one congruence class modulo n;, call it y;, such that
Niyi = 1 mod n;. Set x = 377_; a;N;y;. When we consider this equation
modulo r;, the terms with j # i are congruent to 0, since n;|N; for j # i.
Only the term with j = i remains, and from N;y; = 1 mod n; we obtain
x = a;N;y; = a; mod n;. Hence x satisfies all required congruences. a
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7.31. Example. Suppose we seek x such that x = 2 mod 5, x =4 mod 7,
and x = 3 mod 9. This yields N = 315 and Ny, Ny, N3 = 63, 45, 35.

' a; n; I N,' Nimodn; l Yyi

i

1 2 5 63 3 2
2 4 7 45 3 5
3 3 9 35 -1 -1

By the Chinese Remainder Theorem, we obtain a solution by setting
xtobe2-63-2+4-45-5+4+3-35-(—1) = 1047. (Hand computation using this
procedure should check the solution at this stage!) All numbers congruent
to 1047 modulo 315 are solutions. The one with smallest absolute value
is 1047 — 3 - 315 = 102. ]

When the moduli are not pairwise relatively prime, there may be no
solution, or it may be possible to modify the problem to use the Chinese
Remainder Theorem anyway (Exercise 35).

The solution of Problem 7.3 uses a different equivalence relation.

7.32. Solution. The Newspaper Problem. In Problem 7.3, the check for x
dollars and y cents is paid instead as y dollars and x cents. Note that x
and y are between 0 and 99. After subtracting 50 cents for the newspaper,
the remaining money is twice the original value of the check.

We can encode this information as 100y + x —50 = 2(100x + y), which
simplifies to 98y — 199x = 50. This is a diophantine equation, which
we can solve by the method of Example 6.19. After some calculation,
we obtain (x,y) = (—1650 + 98;, —3350 + 199j) for j € Z. To enforce
0 < x < 100, we take j = 17 and obtain (x, y) = (16, 33). This answer
checks, since $33.16 — $0.50 = 2 x $16.33.

A natural equivalence relation leads to a uniform approach for all
possible prices of the newspaper. Define an equivalence relation on inte-
ger pairs (r, s) representing r dollars plus s cents by saying that pairs are
equivalent if they represent the same amount of money. Thus (a, b) and
(d’, b’) are equivalent if (a, b) = (a’ + n, b’ — 100n) for some n € Z.

The problem states that (y, x — 50) and (2x, 2y) are equivalent, each
representing the amount of money remaining after buying the newspaper.
After setting y = 2x 4+ n and x — 50 = 2y — 100n, we eliminate y to obtain
3x + 50 = 98n. Since x > 0, we have n > 0. Since x is an integer, 98n — 50
must be divisible by 3; this holds if we choose n = 1. With n = 1 we obtain
x =16 and y = 2x + 1 = 33, as before.

When the newspaper costs k cents, we obtain 3x + k = 98n. For
k = 75, this requires n to be positive and divisible by 3, but » > 3 implies
x > (98-3-175)/3 = 73. Since y = 2x + n, this yields y > 149, which
violates the conditions of the problem. Hence there is no solution when
k = 75. Each choice of n up to 99 yields solutions for various k. For
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example, when n = 99, we have the solution $0.99 for the original check,
if the newspaper costs $97.02. See also Exercise 37. ]

FERMAT’S LITTLE THEOREM

Let p be a prime number, and let a be a nonzero integer not divisible
by p. The function f,: Z, — Z, defined by f,(x) = ax is a bijection, by
Lemma 7.27. In the functional digraph for f5: Z,3 — Z;3 shown below, all
the cycles have the same length except the cycle consisting of 0 alone.

12 8 10 11 7 9

5 1 2 3 4 6
This observation holds in general and is the key to one of many proofs
of Fermat’s Little Theorem. Proved by Pierre de Fermat (1601-1665), the
theorem states that a”?~! = 1 mod p when p is prime and a is not a mul-
tiple of p. Exercise 43 requests a proof using Lemma 7.27 and modular
computation. Exercise 6.37 requests a proof using induction and binomial

coefficients. Example 9.38 presents a proof using multinomial coefficients.
We now present a proof due to Leonhard Euler (1707-1783).F

7.33. Definition. When some power of a is congruent to 1 modulo p, the
order of a (in Z,) is the least k such that a* = 1 mod p.

7.34. Lemma. Let p be prime, and suppose that a # 0 mod p. Forx € Z,,,
let S, = {x, xa, xa?, ...}). Thereis a positive integer k such that, for all

x # 0, the set S, consists of exactly k elements.

Proof: Since Z, is finite, the positive powers of a cannot be distinct mod-
ulo p, and eventually some remainder repeats. If a™ = a” mod p with
m > n, then a"" = 1 mod p. Thus the order of a is well-defined; call it
k. Now 1,a,a?,..., a*"! are distinct, and thereafter the list repeats. We
have |S;| = k.

By Lemma 7.27, multiplication by x permutes the elements of Z, —{0}.
Thus x, xa, xa2, ..., xa*1 are distinct. Since xa* = x mod p, thereafter

the list repeats. We have proved that |S,| = k for all x. [ ]

TFor further reading about this theorem, see Andre Weil, Number Theory:
An Approach through History, Birkhauser (Boston, 1984).




148 Chapter 7: Modular Arithmetic

The key idea is that the sets defined in Lemma 7.34 are the equiva-
lence classes of an equivalence relation on Z,. Since multiplication by a
defines a permutation of Z, and these sets are the cycles of the permu-
tation, Example 7.14 provides one way to establish this claim. Here we
provide an algebraic proof.

7.35. Lemma. If R is the relation on Z, defined by (x,y) € R if and
only if y = xa’ mod p for some nonnegative integer j, then R is an
equivalence relation.

Proof: Since x = xa® mod p, R is reflexive. Let k be the order of a
in Z,. When y = xa’ mod p, we may assume that 0 < j < k-1 If
y = xa’ mod p, then x = ya*~/ mod p, so R is symmetric. If y = xa” mod p
and z = xa® mod p, then z = xa"** mod p, so R is transitive. ]

7.36. Theorem. (Fermat’s Little Theorem) If p is prime and a is not a
multiple of p, then a”~! = 1 mod p.

Proof: Let k be the order of a in Z,. We prove that p — 1 is a multiple of
k, and thus

a1 = g™ = (a*)" = 1" = 1 mod p.

In the equivalence relation R defined in Lemma 7.35, the equivalence
class containing 0 is {0}. The remaining classes partition Z, — {0}. The
equivalence class S, containing x consists of all classes obtainable from x
by multiplying by a power of a. By Lemma 7.34, S, has size k. Thus R
partitions Z, — {0} into sets of size k, and p — 1 is a multiple of £. [ ]

7.37. Example. We have seen that 5 = 1 mod 13. The smallest powers
of 4, 3, 2 congruent to 1 modulo 13 are 4%, 3%, and 2!2. In each case, we
obtain a!2 = 1 mod 13. [ ]

7.38. Example. Computation with Fermat’s Little Theorem. We can
rapidly compute remainders for large numbers involving powers. For
example, computation modulo the prime 31 yields

11902 — 113030+2 — (1130)30. 112 = 139. 121 = —8 = 28 mod 31. ]

7.39. Corollary. If p is prime and a € Z, then a” = a mod p. ]

The contrapositive of this corollary of Fermat’s Little Theorem en-
ables us to solve Problem 7.4 most of the time.

7.40. Solution. Primality testing. Let a and p be integers. The contra-
positive of Corollary 7.39 states that if a” is not congruent to a modulo p,
then p is not a prime number. Thus, finding such a number a proves that
p is not prime without knowing any factors of p.
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For example, suppose we want to test whether 341 is prime. If we
choosea = 7, we have an easy computation. Because 7% = 343 = 2 mod 341
and 219 = 1024 = 1 mod 341, we can compute

7341 — 7311342 _ 911392 _ 91104372 _ 8. 49 = 392 = 51 mod 341.

Since 51 # 7 mod 341, we conclude that 341 cannot be prime.

We can apply this test even without such a clever choice for a. Al-
though it still takes some work, computing the congruence class of a%4!
never requires 341 multiplications. Using repeated squaring, we can
compute the congruence classes of the numbers {a?}. The binary repre-
sentation of 341 tells us which of these to multiply together to compute
a®!, For example, suppose a = 3. Repeated squaring yields

32=9 3% = 812 = 6561 = 82 mod 341
34 =81 316 = 892 = 245 mod 341

and so on. The binary representation of 341 is 101010101. If we multiply
together the congruence classes of 3" forn = 1, 4, 16, 64, 256, we have the
congruence class of 3341, [

Modular multiplications are fast on computers. If n is not prime, then
computing the congruence class of a” for a few random choices of a is likely
to prove that n is not prime, but this does not always work. There are
some numbers such that " = a mod n for every a even though n is not
prime. One such number is 561, which has prime factorization 3 - 11- 17.
Such numbers are Carmichael numbers. We state a characterization
of these numbers, without proof. A natural number n is a Carmichael
number if and only if the following two properties hold: » has no repeated
prime factors, and (p — 1)|(n — 1) whenever p is a prime factor of n. For
example, 2, 10, 16 all divide 560.

CONGRUENCE AND GROUPS (optional)

In the remainder of this chapter, we present a bit more formal discus-
sion of the arithmetic properties of Z,. We have proved that addition and
multiplication modulo n are well-defined. This enables us to specify addi-
tion and multiplication tables for the elements of Z,. Below we illustrate
these for Z¢ and Z;.

0123456  %[01234
+|012345  x|012345 +10123 0123456

00123456 0[0000000
0012345 0]000000

1/1234560 1|0123456
1/123450 1|012345

2|2345601 20246135
2/234501 2]{024024

33456012 3|0362514
3/345012 3|0s30303

4|4560123  4|0415263
4|450123  4|042042
s|5o0228 21022042 5/5601234 5|0531642

616012345 6|0654321
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Since adding a multiple of » does not change a congruence class mod-
ulo n, the class 0 is an identity element for the addition modulo n.
Furthermore, (n —i) +i = n = 0 mod n, so the class n — i acts as an addi-
tive inverse of i. As verified earlier, the sum of two congruence classes is
a congruence class. Also, (a +b) + ¢ = a + (b + ¢) mod n. These properties
make Z, a “group” under addition mod p.

7.41. Definition. A group is a set G together with a binary operation o
on GT satisfying the following properties:
1) There is an element ¢ € G such that foreveryx € G, xoce = x = eox
(e is the identity element of the group).
2) For every x € G, thereisanelement y € G suchthatxoy = e = yox
(y is the inverse of x).
3)Foreveryx, y,z € G, (xoy)oz = xo(yoz) (associative property).

A fundamental example of a group is the set of permutations of [n],
where the binary operation is composition (Exercise 49).

The elements of a field (Definition 1.39) form a group under addi-
tion. The nonzero elements of a field form a group under multiplication.
Whenever the binary operation in a group is written as +, we express the
inverse of x as —x, write y — x for y + (—x), and name the identity element
0. We have done this for Z, under addition mod n.

What about multiplication in Z, — {0}? We know that 1 is a multi-
plicative identity, but we soon run into trouble. When # is the product of
integers a, b larger than 1, we have a - b = 0 mod n, so discarding 0 does
not permit the remaining elements to form a group under multiplication
(see the table for Zg).

When p is prime, p|ab implies p|a or p|b. Hence ab is not congruent to
0 mod p when a and b are not congruent to 0 mod p. Thus multiplication
is a binary operation on Z, — {0}. The associative property follows from
the associative property of integer multiplication, since we can select any
integers from these congruence classes to do the computation. Finally, we
verify below that multiplicative inverses exist in Z, — {0} whenever p is
prime. The table before Definition 7.41 exhibits multiplicative inverses
inZs —{0}; wehave6-6=1,5-3=1,4-2=1,and1-1=1.

7.42. Corollary. When p is prime, Z,—{0} is a group under multiplication.
Proof: We have verified all the needed properties except the existence of
inverses. Consider a # 0. Since a and p are relatively prime, Corollary
7.28 implies that there is some nonzero class b such that b = 1. The
class b is the desired (@)~!. Note also that ba = 1, since multiplication
modulo p is commutative. ]

TThe definition of a binary operation includes the property that x o y € G for
all x, y € G; this is the property of closure under o.
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In our discussion, we have completed all the details of proving that
Z, is a field if (and only if) p is prime.
When can a number be its own multiplicative inverse?

7.43. Lemma. If p is prime and a € N, then a? = 1 mod p if and only if
a=1mod pora=-1mod p.

Proof: If a? = 1, then p divides a® — 1, which equals (a + 1)(a — 1). When
a prime divides a product, it must divide one of the factors (Proposition
6.7). Hence p dividesa+1ora—1, yieldinga = —1 mod pora = 1 mod p.
Conversely, if a is in one of these classes, then p divides (a +1)(a — 1), and

a? is in the same congruence class as 1. ]

7.44. Theorem. (Wilson’s Theorem) (p — 1)! = —1 mod p for p prime.

Proof: This holds for p = 2 because 1 = —1 mod 2. Consider p > 2. For
each 1 <i < p — 1, there is exactly one i’ in [p — 1] such that ii’ = 1, by
Lemma 7.27. By Lemma 7.43, the numbers from 2 through p — 2 form
disjoint pairs of inverses. Hence ﬂf’='22i = 1 mod p, and ]']f;lli =p-—-1=
—1 mod p. [

Wilson’s Theorem was only conjectured by John Wilson (1741-1793);
Joseph Louis Lagrange (1736-1813) gave the first proof in 1770.

EXERCISES

7.1. (=) Let a, b, x, n be positive integers. The following statement is not always
true: “If ax = bx mod n, then a = b mod n.” Provide a counterexample, and add a
hypothesis on x and n to make the statement always true.

7.2. Does the last digit of an integer (written in base 10) determine whether the
integer is divisible by 5? By 2? By 3?

7.3. Suppose that a person sleeps exactly 8 hours each day and goes to sleep at
midnight on April 1. She always goes to sleep exactly 17 hours after she wakes up.
Does she rise at each hour of the day during the month of April? What happens if
instead she always goes to sleep exactly 18 hours after she wakes up? Explain.

7.4. (-) Prove that if two natural numbers have the same number of copies of
each digit in their decimal representations, then they differ by a multiple of 9.

7.5. (—) What is the congruence class of 10" modulo 11? Use this to determine
the remainder when 654321 is divided by 11.

7.6. (!) Determine the last digit (the ones digit) in the base 8 expansion of 91°%,
101000 and 111000,

7.7. (-) When the remainders modulo m of the numbers 12, 22, ..., (m — 1)2 are
listed in order, the list is symmetric around the center. Why?
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7.8. (—) Let k be an odd number. Prove that k2 — 1 is divisible by 8.

7.9. (—) Use Fermat’s Little Theorem to find a number between 0 and 12 that is
congruent to 2!% modulo 13.

7.10. Define a relation R on the set of humans on this planet by putting (x, y) € R
if x and y are citizens of the same country. Is R an equivalence relation?

7.11, For each example below, determine whether the given relation R is an equiv-
alence relation on the given set S.

a) §$ = N —{1}; (x, y) € R if and only if ged(x, y) > 1.

b) $ = R; (x, y) € R if and only if there exists n € Z such that x = 2"y.

7.12. Let S be the union of disjoint sets Ay, ..., As. Let R be the relation consisting
of pairs (x, y) € S x S such that x, y belong to the same member of {A, ..., A;}.
Prove that R is an equivalence relation on S.

7.13. Let P be the power set of [2n]. Let R be a relation defined on Pby (A, B) € R
if and only if A N [7] = B N [n]. Determine whether R is an equivalence relation.
What happens when [n] and [2n] are generalized to sets C and S such that C C §?

7.14. Given f: R — R, let O(f) be the set of functions g for which there exist
positive constants c, a € R such that [g(x)| < ¢ |f(x)| for x > a (see Exercise 2.23).
Define a relation R on the set S of functions mapping R to R by putting (g, #) € R
if and only if g — h € O(f). Prove that R is an equivalence relation on S.

7.15. Find the flaw in the following argument that the symmetric and transitive
properties imply the reflexive property for a relation R on S: “Consider x € S. If
(x,y) € R, then the symmetric property implies that (y, x) € R. Now the transitive
property applied to (x, y) and (y, x) implies that (x,x) € R.”

7.16. (1) Prove that every year (including leap years) has at least one Friday the
13th. What is the maximum number of Friday the 13ths in a year? (Hint: Use
modular arithmetic to simplify the analysis.)

7.17. Give three proofs that n3 + 5n is divisible by 6 for every n € N.
a) Use induction.
b) Use modular arithmetic.
¢) Use an expression for n? + 51 in terms of binomial coefficients.

7.18. Let p be an odd prime. Determine all solutions to 2n2 + n = 0 mod p.

7.19. () For m,n, p € Z, suppose that 5 divides m? + n% + p2. Prove that 5 divides
at least one of {m, n, p}.

7.20. (—) Use modular arithmetic to prove that k" — 1 is divisible by & — 1 for all
n,k € Nwith k > 2.

7.21. (!) Use modular arithmetic to prove that N is divisible by ! if N is the
product of k consecutive natural numbers.

7.22. (+) Prove that there are infinitely many primes of the form 4n + 3 and
infinitely many primes of the form 6n + 5, where n € N. (Hint: Show first that
the divisors of a number congruent to —1 mod 4 cannot all be congruent to 1 mod
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4, and the divisors of a number congruent to —1 mod 6 cannot all be congruent
to 1 or 3 mod 6. (Comment: Dirichlet proved more generally that if a and b are
relatively prime, then there are infinitely many primes of the form an + b, but this
is beyond the techniques we have available.)

7.23. (!) The base 10 representation of an integer is palindromic if the digits
read the same when written forward or backward. Prove that every palindromic
integer with an even number of digits is divisible by 11. More generally, prove
that every integer whose base k representation is palindromic and has even length
is divisible by & + 1.

7.24. Define f: Z, — Z, by f(x) = x2. For which n € N is f injective?

7.25. (—) Prove that the first six powers of 10 belong to distinct congruence classes
modulo 7. (Comment: Gauss asked whether the powers of 10 yield n — 1 distinct
congruence classes modulo n for infinitely many n; this remains unanswered. The
moduli 5 and 13 fail, even though they are primes.)

7.26. Let n be a natural number whose base 10 representation is a permutation
of the six digits {1, 2, 3, 4,5, 6}. Suppose that for 1 < i < 6, the i-digit number
formed by the leftmost i digits is divisible by i. The integer 123456 fails, for
example, because 1234 is not divisible by 4. Determine all possible values of n.

7.27. (+) Let n be a natural number whose base 10 representation is a permuta-
tion of the digits 0 through 9. Suppose that for 1 < i < 10, the i-digit number
formed by the leftmost i digits is divisible by i. Determine all possible values of
n. (Hint: The divisibility requirements impose constraints; for example, the tenth
digit must be 0, and then the fifth digit must be 5. Division is not needed.)

7.28. (1) Test for divisibility by 7.

a) Let a; - - - ap be the base 10 representation of n. We can determine whether
n is divisible by 7 by treating n as )  4;10' and reducing the powers of 10 modulo 7;
we have discussed this approach to divisibility by 9. Apply this to check whether
7 divides 535801.

b) Given a positive integer n, let f(n) be the integer formed by subtracting
twice the last base 10 digit of n from the number formed by the remaining digits
of n. For example, if n = 154, then f(n) = 15 — 8 = 7. Prove that 7|n if and only if
71 f(n). Apply this to check whether 7 divides 535801. (Hint: To prove that 7|n if
and only if 7| f (n), prove first that 7|n if and only if 7|[10 f (n)].)

7.29. Test for divisibility by n (generalizing Exercise 7.28). Let n be a positive
integer. Let f(n) be the result of subtracting j times the last base 10 digit of n
from the number formed by the remaining digits of n (j = 2 in Exercise 7.28).
Prove that if s is not divisible by 2 or 5 and 10j = —1 mod s, then n is divisible by
s ifand only if f(n) is divisible by 5. Describe the resulting tests for divisibility by
17 and by 19, and illustrate how they work on 323, which equals 17 - 19.

7.30. (') Primes and threes.

a) Prove that the sum of the digits in the base 10 expansion of a natural num-
ber n is a multiple of 3 if and only if n is a multiple of 3.

b) Prove that 6|x when x + 1 and x — 1 are prime, with one exception.

c) Suppose that x + 1 and x — 1 are prime. Form a new number by concate-
nating the digits of one with the digits of the other. Thus {11, 13} can become 1113
or 1311. Prove that the resulting number is not prime, with one exception.




154 Chapter 7: Modular Arithmetic

7.31. (!) We say that k is a square modulo n if ¥ = j2 mod n for some j. Suppose
that n = m2 + 1 for some m € N. Prove that if k is a square modulo n, then —k is
also a square mod n.

7.32. Supposethatn € N,a, b € Z, andd = ged(a, n). Consider arithmetic modulo
n. Prove that there is no congruence class x that solves the congruence equation
ax = b unless d divides b, in which case there are d solutions.

7.33. (!) 1500 soldiers arrive in training camp. A few soldiers desert the camp.
The drill sergeants divide the remaining soldiers into groups of five and discover
that there is one left over. When they divide them into groups of seven, there are
three left over, and when they divide them into groups of 11, there are again three
left over. Determine the number of deserters.

7.34. Find all integers that are congruent to 1 mod 7, 3 mod 8, and 5 mod 9.
Which solution has the smallest absolute value?

7.35. Suppose that x = 3 mod 6, x = 4 mod 7, and x = 5 mod 8. Explain why
the Chinese Remainder Theorem does not apply to compute x. Transform the
problem to an equivalent problem where the Chinese Remainder Theorem can be
used. Compute the smallest positive solution for x. Give a precise (and concise)
reason why there is no smaller positive number that works.

7.36. Derive a description of all integers congruent to x mod ¢, y mod b, and
z mod ¢, given that n is such an integer.

7.37. (+) Analyze the Newspaper Problem in full (Solution 7.32). In particular,
for which prices of the newspaper does the problem have a solution?

7.38. We form a necklace by placing distinguishable beads (numbered 1 through
n) on a circular string. Two necklaces are indistinguishable if one can be rotated
or flipped to make it look like the other. Prove that indistinguishability is an
equivalence relation. Count the equivalence classes with n beads. (The beads are
distinguished by their labels, so there is no problem of periodicity.)

7.39. Let n be prime. We are given k types of feathers, each in unlimited supply.
We wish to place one feather at each corner of an n-cornered hat. Each such
arrangement can rotate; unlike necklaces, hats cannot be worn upside-down. Two
arrangements of feathers are indistinguishable if one can be rotated to look like
the other. Prove that indistinguishability is an equivalence relation. Count the
equivalence classes of hats with feathers.

7.40. We have a stick partitioned into n equal segments. We have k colors of paint
and must paint each segment. A list of colors on the segments is indistinguishable
from its reverse, because when tossed in the air the stick can land either way. How
many distinguishable colorings of the stick are there?

7.41, Define f and g from Z, to Z, by f(x) = (x +a) mod n and g(x) = ax mod n.
a) Give a complete description of the functional digraph of f.
b) Draw the functional digraph of g for the case (n, a) = (19, 4) and the case
(n,a) = (20, 4). Describe a property of the digraph that is true whenever n is
prime and false whenever n is not prime.

7.42. () For all a € Z,3 — {0}, find the least & such that a* = 1 mod 13. Also list
the partition of [12] into cycles under multiplication by a.
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7.43. (!) By Theorem 6.21, {a, 2a, ..., (p — 1)a} have distinct remainders modulo
p when a and p are relatively prime. Use this to give a short proof of Fermat’s
Little Theorem.

7.44. Fermat’s Little Theorem implies that p divides 27 — 2 if p is prime. Fermat
conjectured that the converse is also true, meaning that p divides 2” — 2 only if
p is prime, but he was wrong. Euler provided the counterexample of p = 341.
Use Fermat’s Little Theorem to prove that 341 is not prime and that 341 divides
2341 _ 2 verifying Euler’s counterexample.

7.45. Let m be a positive integer. Give an example of a polynomial f with integer
coefficients and leading coefficient 1 such that f(x) = 0 mod m for all x € Z.
(Comment: Compare this with Corollary 3.25.)

7.46. (!) A cyclic shift of a p-tuple x is a p-tuple obtained by adding a constant
(modulo p) to the indices of the elements of x; shifting x by p +i positions produces
the same p-tuple as shifting x by i positions. For a € N, let R be the relation on
[a)? (the set of p-tuples with entries in (1,..., a}) defined by putting (x, y) € R if
the p-tuple y can be obtained from x by a cyclic shift.

a) Prove that R is an equivalence relation on [a]”.

b) Use part (a) and Lemma 7.27 to prove that p divides a? — a when p is
prime. (Hint: Partition a set of size a? — a into subsets of size p.)

c) Use part (b) to prove Fermat’s Little Theorem.

7.47. Let p be an odd prime. Prove that 2(p — 3)! = —1 mod p. (Hint: Use
Wilson’s Theorem, Theorem 7.44.)

7.48. (—) Suppose that p > 1 and (p — 1)! = —1 mod p. Prove that p is prime.
(Comment: This is the converse of Wilson’s Theorem.)

7.49. Prove that the set of permutations of [n], viewed as a set of functions from
[n] to [n], forms a group under the operation of composition.

7.50. Prove that the polynomials of degree k with coefficients in Z, form a group
under addition modulo p.

7.51. Let G be a group under the binary operation o. Prove that for every x € G
there is a unique y such that yox = 1.

7.52. Let G be a group under the binary operation o. Define f,: G — G by f,(x) =
y ox. Prove that f, is a bijection.

7.53. (!) Let G be a finite group under multiplication, with identity element 1.
Given x € G, the least k such that x* = 1 is the order of x. Prove that the order
of x divides |G]|.




Chapter 8
The Rational Numbers

Within the real number system, division by a nonzero number is al-
ways defined. In particular, when p and g are integers and g # 0, the
quotient p/q is a real number. Such real numbers are called rational; the
others are irrational. We denote the set of rational numbers by Q. After
relating rational numbers to geometry, we prove that some real numbers
are irrational and characterize Pythagorean triples.

8.1. Problem. The Billiard Problem. Suppose that a square billiard table
has corners at {(0, 0), (1, 0), (1, 1), (0, 1)}. A ball leaves the origin along
a line with slope s. If the ball reaches a corner, it stops (or falls off the
table). Whenever it hits the side of the table not at a corner, it continues
to travel on the table, but the slope of the line is multiplied by —1. Does
the ball reach a corner? When s = 3/5, the answer is “Yes”. ]

(1/3,1) 1,1)

(0,4/5)
(1,3/5)
(0,2/5)
(1,1/5)

0,0) (2/3,0)

8.2. Problem. Pythagorean triples. What are the integer solutions to
a® + b? = c?? The positive solutions measure sides of right triangles. ®

8.3. Problem. Iterated averaging. Starting with {0, 1}, what numbers
can be found by iteratively averaging two numbers already found? ]

156
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RATIONAL NUMBERS AND GEOMETRY

The familiar word “fraction” is commonly used with many different
(but related) meanings. To clarify understanding of the rational numbers,
in this book we use one specific meaning.

8.4. Definition. A fraction is an expression consisting of an integer (the
numerator), a division symbol, and a nonzero integer (the denomi-
nator). For integers a, b, we write the fraction as § or a/b.

Since division by nonzero integers is well-defined in the real number
system, a fraction represents a unique rational number, the result of the
division. On the other hand, many fractions represent the same rational
number; 1 = 2 = 3, for example.

Since fractions represent unique rational numbers, we treat them
in equalities and inequalities as the numbers they represent. We use
the word “fraction” when we want to discuss the pair of numbers as an
expression or as a particular representative of a rational number.

The elementary criterion for when fractions represent the same num-

ber uses only integer multiplication.

8.5. Remark. Fractions § and § represent the same rational number if
and only if ad = bc. a2

Remark 8.5 expresses a rational number as a set of fractions. From
the perspective of the real numbers, a rational number is simply a real
number that can be expressed as the quotient of two integers. In Appendix
A we construct Q from N without mentioning R, defining a rational num-
ber to be an equivalence class of fractions under the relation given in
Remark 8.5 (see Chapter 7 for discussion of equivalence relations).

In Chapter 6, we proved that integers have unique prime factoriza-
tions. We thus can write the numerator and denominator of a fraction
as products of prime powers. When they have a common factor, we can
cancel it to obtain another representative of the same rational number.

8.6. Definition. A fraction a/b is in lowest terms if a and b have no
common factors and b > 0.

8.7. Remark. A fraction is in lowest terms if and only if its denominator
is the smallest positive number among the denominators of all represen-
tatives of the same rational number (Exercise 9). ]

8.8. Remark. Canonical “factorization” of rational numbers. A rational
number x has a unique representation as a fraction a/b in lowest terms.
The prime factorizations of a and b use distinct primes. This yields a
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canonical representation of x using primes. We write x = a/b = [] p{,
where ¢; is positive for primes that divide ¢ and negative for primes that
divide b. The canonical representation simultaneously minimizes the ab-
solute value of the exponent on each prime. |

Representing a rational number as a fraction in lowest terms is of-
ten convenient; see Theorem 2.3, for example. Nevertheless, this is not
always the most appropriate representative. When adding two rational
numbers, for example, one first writes them as fractions with a common
denominator. This illustrates why it is useful to think of a rational num-
ber as the set of all its representations as fractions.

We next give a geometric interpretation of rational numbers.

8.9. Example. Geometric interpretation of rational numbers. Given a
pair (a, b) of integers (not both zero), define the line L(a, b) through the
point (0, 0) € R2 by L(a, b) = {(x, y) € R%: bx = ay}. The lines L(a, b) and
L(c, d) are the same if and only if ad = bc. Observe that the integer point
(p. 9) € R? lies on the line L(p, q).

This establishes a bijection between the rational numbers and the
lines through the origin (other than the vertical line) that pass through
integer points. The inverse of this bijection assigns to L(a, b) the rational
number b/a that is its slope. [ ]

(5.3)

e

0,0

8.10. Solution. The Billiard Problem. Our ball starts at the origin and
bounces off the walls of the unit square; let L be the line with slope s
along which it starts. Vertical direction changes after each unit of vertical
travel, but the magnitude of the vertical rate of travel remains the same.
The same statement holds for horizontal motion.

Thus “reaching a corner” means simultaneously having traveled in-
teger amounts m horizontally and n vertically. This occurs if and only if
L contains the point (m, n). The path followed by the ball is then a fold-
ing of the segment from (0, 0) to (m, n). The line L contains such a point
if and only if s is rational. (Exercise 16 develops a stronger statement.) B
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Often it is convenient to describe the set of points forming a line or
curve in the plane using a single variable. The points in the set are or-
dered pairs, and each coordinate in the ordered pair is expressed as a
function of the new variable. This variable is a parameter, and the two
functions are called parametric equations for the set.

Parametric equations for a line are closely related to its slope. In the
description below, the parameter describing position on the line is #; the
pair (a, b) designates a particular line. For lines that don’t contain the
origin, see Exercise 6.

8.11. Proposition. Every line L in R? that contains the origin and has
rational slope is specified by an integer pair (a, b) (with a # 0) such
that (x, y) € L if and only if (x, y) = (at, bt) for some real number ¢.

Proof: If (x, y) = (at, bt), then bx — ay = 0. Thus such pairs satisfy the

equation of a line through the origin (see Definition 2.1). This line has

rational slope b/a.

Conversely, suppose that the line L is defined by Ax + By = 0 for real
numbers A and B that are not both 0. If B = 0, then the line is vertical and
does not have rational slope. If B # 0, then the slope of the lineis —A/B,
which we have assumed is rational. Therefore we can write —A/B = b/a
for integers a, b. Now (x, y) lies on L if and only if bx — ay = 0, which is
equivalent to (x, y) = (at, bt) for some real number 7. [ ]

Parametric equations for a circle are more subtle. Later they will help
us solve Problem 8.2. The unit circle is the set {(x, y) € R%: x2 +y% = 1}.

8.12. Theorem. (Parametrization of the Unit Circle) If x # —1, then
x2 4 y2 = 1 if and only if there is a real number ¢ such that

. 9) 1-12 2t
x,V=—=,—=1.
Y 1+12°1+412
Furthermore, such a point (x, y) has rational coordinates if and only

if ¢ is a rational number.

Proof: For r € R, always };—:: # —1. Thus if (x, y) has the specified form,
then x # —1 and

s (1—1%? 4¢2 1422414

2 —
Y = ar e T areE T 1T o2

This proves that the condition is sufficient for x2 + y2 = 1 when x # —1.

To prove the converse, suppose that (x, y) satisfies x # —1 and x2 +
y2 = 1. Consider the line containing the points (—1,0) and (x, y). Its
equation is given by y = t(x + 1), where ¢ is its slope. Substituting this
into the equation x2 + y2 = 1 yields a quadratic equation for x in terms of
the parameter ¢, namely x2 + r2(x 4+ 1)2 = 1. We rewrite this as
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A+3)x2+22x+12-1=0.

One solution to this is x = —1, which is excluded for the point (x, y)

we are studying. Since the product of the solutions is ‘1;; (see Exercise
1.20), the other solution is x = I—Hg Using y = t(x + 1) and simplifying
yields y = I—Hf Thus (x, y) satisfies the claimed parametric equations.
For the final statement, note that if 7 is rational, then the parametric
equations imply that x and y also are rational. Conversely, if x # —1 and

x, y are rational, then ¢t = y/(x 4+ 1) also is rational. [ ]
(x,y)
(-1,0
IRRATIONAL NUMBERS

The set Q of rational numbers forms an ordered field, but it does not
satisfy the Completeness Axiom. This partly explains why some famil-
iar equations such as x2 = 2 have no rational solutions. In this section
we study the existence of rational zeros of polynomials in one variable
with integer coefficients. Earlier we found the rational solutions to the
particular equations bx + ay = 1 and x? + y? = 1 in two variables.

We begin with the polynomial x2 —2. We proved in Theorem 3.31 that
V2 is irrational. Here we give another proof and generalize both proofs.

8.13. Example. Irrationality of +/2. We claim that the equation x2? = 2
has no rational number x as a solution. Otherwise, we may consider a
rational solution x = a/b written in lowest terms. We have a? = 2b?, s0 a?
is even. Since the square of an odd integer is odd, a must be even. Now a2
is divisible by 4, and hence 242 is divisible by 4, so b? is even. We conclude
that b also is even. Now a, b are both divisible by 2, contradicting the
choice of a/b in lowest terms. ]

This argument generalizes to prove that no prime number has a ra-
tional square root (Exercise 18), but stronger results are available. A
somewhat different argument prohibits rational square roots for all nat-
ural numbers (except the squares of integers).
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8.14. Theorem. The positive integer k has no rational square root if k is
not the square of an integer.

Proof: We use contradiction. Suppose that +/k is rational and that m/n
is a fraction representing it such that » is positive and minimal. If m/n is
not an integer, then there is an integer g such that m/n — 1 < g < m/n.
This is equivalent to 0 < m —ng < n. Since m — nq # 0, we can write

m __m(m-—nqg) m? — mngq _ n’k — mnq _nk—mgq

n nm-ng) nm—ng) nm-—ng) m—ng’

Since 0 < m —ng < n, we have found a representation of m/n with smaller
positive denominator, which contradicts the choice of n. Therefore, if the
square root of k is rational, it must be an integer. ]

8.15. Remark. The proof of Theorem 8.14 is actually an inductive proof
phrased using the method of descent; we proved that there is no coun-
terexample with smallest positive denominator. It is possible to prove
statements about rational numbers by induction on the denominator of
the representative in lowest terms.

Even though Q is countable (Exercise 17), we cannot use induction
with respect to the usual order “<” to prove results about the nonnegative
rational numbers. There is a place to start (0), but there is no “next”
rational number; when x, y are distinct rational numbers, we can find
another rational number between them, such as their average.

Selecting the representative of a rational number with smallest posi-
tive denominator is an example of extremality. The lack of more extreme
examples helps shorten proofs; this is how the method of descent works.
Another extremal description of fractions in lowest terms arises from the
geometric interpretation of rational numbers: if x = a/b in lowest terms,
then (b, a) is the integer point with positive first coordinate that is closest
to the origin on the line associated with x in Example 8.9. ]

The proof of Theorem 8.14 does not use the prime factorization of in-
tegers and is generalized in Exercise 24. Other proofs appear in Exercise
19 and Exercise 22. We next generalize the argument in Example 8.13 to
describe rational zeros of polynomials with integer coefficients.

8.16. Theorem. (Rational Zeros Theorem) Let ¢y, . .., ¢, be integers with
n>1andcoc, #0,and let f(x) = Y[ gcix' forx e R. Ifrisa
rational solution to the equation f(x) = 0, written as p/q in lowest
terms, then p must divide ¢y and g must divide c,.

Proof: When f(r) = 0, we can multiply both sides of f(r) = 0 by ¢" to
obtain }"_ c;p'qg"~" = 0. Moving the term ¢, p" to the other side yields

n—1 n—1
—cap" = Zciptqn—z =gq Zcip'q"_l_'-
i=0 i=0




162 Chapter 8: The Rational Numbers

Since ¢ divides one side of this equation, it must also divide the other
side. Since g and p are relatively prime (because p/q was chosen in lowest
terms), we conclude that ¢ must divide ¢,.

If we instead move the term coq” to the other side, then we obtain

n n
_Coqn = Zcipan—r = PZCiP'_lq"_'-
i=1 i=1

Now p divides one side and hence the other. This implies that p divides
co, since p and g are relatively prime. ]

8.17. Example. No rational solutions. If the equation x3 —6 = 0 has a
rational solution r, written as p/q in lowest terms, then ¢ must divide 1
and p must divide 6. The only possibilities are r = +1, +2, +3, +6, none
of which work. Hence the cube root of 6 is irrational. [ ]

8.18. Example. Solutions to quadratics. The quadratic formula gives
(—b &+ v/b% — 4ac)/2a as the solutions to ax?+bx+c = 0. Even whena, b,
are integers, the solutions may be irrational. For example, (1 + V5) /2is
a solution to the equation x2 — x — 1 = 0. This number is not rational, be-
cause the Rational Zeros Theorem implies that the only possible rational
solutions to this equation are +1, which do not satisfy the equation. =

8.19. Remark. Products of irrational numbers may be rational. Since
every nonzero real number has a reciprocal, every irrational number x
has a reciprocal 1/x such that x - (1/x) = 1. For example, the reciprocal
of (+/5 + 1)/2 is (+/5 — 1)/2; their product is 1. In general, the product of
the solutions of a quadratic equation with rational coefficients is always
rational (Exercise 3). [

PYTHAGOREAN TRIPLES

Why should we care that there is no rational solution to x = 2? We
believe there is a number +/2 that is the ratio of two physical quantities.
The length of the diagonal of a square with side-length 1 is a quantity that
we believe is +/2; it satisfies x2 = 2. In elementary geometry, we construct
right angles with straightedge and compass. We can thus construct a
right triangle whose short sides have unit length. The length of the third
side is +/2, by the Pythagorean Theorem.

The ancients believed that all numbers were rational. It is said that
therefore the person who discovered irrational numbers was murdered
(by drowning). Are irrational numbers “crazy”? The Billiard Problem and
decimal expansions (see Chapter 13) show that irrational numbers ex-
hibit complicated behavior, but the term “irrational” does not arise from
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“crazy”. The psychological meaning (lacking reason) and the mathemat-
ical meaning (not a ratio of integers) are related only in that “ratio” and
“reason” come from the same Greek root. The Pythagoreans allowed only
rational numbers in their reasoning.

8.20. Theorem. (Pythagorean Theorem) If a, b, ¢ are the lengths of the
sides of a right triangle, with ¢ the length of the side opposite the
right angle, then a2 + b% = 2.

Proof: (Sketch) We assume the notions of right angle, triangle, rectangle,
and area. We assume that the area of a rectangle is the product of the
lengths of two neighboring sides, that the area of a region is the sum of the
areas of the regions formed by cutting it by line segments, and that the
area of congruent regions is the same. Thus the area of a right triangle
is half the product of the short sides, because the diagonal of a rectangle
cuts it into two pieces of equal area.

The outer quadrilateral shown below is a square. By symmetry con-
siderations, the four triangles are congruent and the inner quadrilateral
also is a square (see Exercise 15). The area of the large square equals
the area of the small square plus the areas of the triangles. This yields

(a + b)? = c? + 4(ab/2), which simplifies to a? + b? = c2. (]
a
b c
a b

8.21. Example. Pythagorean triples. The integer solutions to a? +5? = c?
are called Pythagorean triples. The most familiar example is the triple
(a,b,c) = (3, 4, 5), and integer multiples of this also work. Other exam-
ples where a, b, c have no common factor include (5, 12, 13), (8, 15, 17),
(7, 24, 25), (20, 21, 29), and (9, 40, 41). [ ]

We prove that all Pythagorean triples can be generated using two in-
dependent integer parameters. Exercise 29 develops an alternative proof
of this characterization.

8.22. Theorem. The Pythagorean triples are the integer multiples of
triples of the form (2rs, r2 — 52, r2 4+ 5%) or (r2 — 52, 2rs, r2 + 52), where
r, s are integers.
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Proof: Since (2rs)? + (2 — 52)2 = (r2 + 52)2, the triples described are all
Pythagorean triples. Multiplying such a triple by » multiplies the equality
by n2, so all integer multiples of these triples also satisfy a% + b% = ¢2.

We must prove that every Pythagorean triple can be described in this
way. For ¢ € N, we seek integer solutions (a, b) to a®+b% = cZ. Letting x =
a/c and y = b/c leads us to seek rational solutions to x? + y2 = 1. Using
Theorem 8.12 yields {(7 +,2, '1?) t € Q} as the set of rational solutions
other than (—1, 0). Since ¢ is rational, we let # = 5/r in lowest terms and
simplify to obtain

(a,b,c) = (r2 — 52, 2rs,r2 + s2). (%)

c
2+s2

Let z = c/(r% + s?). When z is an integer, (x) expresses the triple in
the desired form.

When z is not an integer, we show first that z is half an integer. Let
z = m/n in lowest terms. Since a and c are integers, (x) implies that n
divides both r2 — 52 and r2 + s2. Hence n also divides their sum 2r2 and
difference 2s2. Since ged(r, s) = 1, also ged(r2, s2) = 1 (see Exercise 19).
To divide both 272 and 252, n must therefore divide 2.

When z is half an integer, 2 + 52 must be even. Since ged(r,s) = 1,
we conclude that both r and s are odd. Now the numbers R = (r + 5)/2
and S = (r — 5)/2 are integers. Note alsothat r = R+ Sands =R - S.
This substitution yields 72 — s2 = 4RS, 2rs = 2(R%? — §2), and r2 + 52 =
2(R? + 5%). Again we have (a, b, ¢) as an integer times a triple in the
desired form:

2
(a,b,c) = (2RS R? — 52 R? + 5%). n

The famous Fermat’s Last Theorem is the statement that x" + y" =
z" has no solution in integers if » > 3. Fermat wrote this in the margin
of a book in the seventeenth century, claiming to have a marvelous proof
that would not fit in the margin, but he died without presenting a proof
to anyone. Mathematicians labored for 350 years to find a proof. Andrew
Wiles succeeded in 1994.

FURTHER PROPERTIES OF Q (optional)

We have seen examples of proofs about rational numbers using reduc-
tion to lowest terms and using the closure of the rational numbers under
arithmetic operations. The next proof uses a different technique, analo-
gous to the construction in Appendix A; first prove the statement for the
natural numbers, then for the integers, then for the rational numbers.
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8.23. Theorem. Suppose f : Q — Q satisfies f(x + y) = f(x) + f(y) for
all x, y € Q. Then f(wx) = wf(x) forall w, x € Q.

Proof: First suppose w = 1; here the statement is a triviality. This pro-
vides the basis step for a proof by induction in the case w € N. For the
induction step, suppose it is true when w = n. Then

flln+Dx) = f(nx +x) = f(nx) + f(x) =nf(x) + f(x) = (n+ 1) f(x),

where we have used the distributive law, the defining property of f, the
induction hypothesis, and the distributive law again. To prove the claim
for w = 0, we need only show that f(0) = 0, which follows from f(0) =
fO+0)= fO0)+ £(0)=2f(0). Forw=-1,weuse 0= f(0) = f(x —x)
= f(x) + f(—x), which implies f(—x) = —f(x). Now we can prove the
claim for w € Z: f((—n)x) = f((—nx) = — f(nx) = —nf(x) forn € N.
Next suppose w is the reciprocal of the integer n. We have f(x) =
f(n(x/n)) = nf(x/n), and therefore f(x/n) = (1/n)f(x). Note that at
each stage we proved the statement for arbitrary x € Q, so these steps
are justified. Now that we have the statement for all integers and for
reciprocals of natural numbers, we can write w € Q as a/b in lowest terms
and conclude f((a/b)x) = af ((1/b)x) = (a/b) f (x). [ ]

The statement of Theorem 8.23 is false when Q is replaced by R; the
conclusion then requires the additional hypothesis that f be continuous
(continuity is discussed in Chapter 15).

8.24. Definition. A rational number is a dyadic rational if it can be
expressed as a fraction whose denominator is a power of 2.

8.25. Solution. Iterated averages and dyadic rationals. We solve Prob-
lem 8.3: which numbers can be generated from {0, 1} by iteratively taking
the average (arithmetic mean) of two numbers already in the set?

Since the average of two rational numbers is rational, only rational
numbers in the interval [0, 1] can arise. In addition, the only numbers
that can arise are dyadic rationals, since 0 and 1 are dyadic rationals, and
the average of two dyadic rationals is also a dyadic rational.

To complete the solution, we prove that every dyadic rational in the
interval [0, 1] is generated. Except for 0 itself, each such rational is ex-
pressed in lowest terms as (2j + 1)/2* for some nonnegative integers j, k.
We prove by induction on k that (2j + 1)/2* is achievable. For k = 0,
the only such number is 1 itself. For the induction step, suppose k > 0,
and consider the number x = (2j + 1)/2* in the interval (0, 1). The num-
ber x is the average of (2j)/2¢ and (2j + 2)/2*, which equal j/2*"! and
(j + 1)/2¢! and lie in [0, 1]. Since one of {j, j + 1} is even, one of these
fractions is not in lowest terms (the numerator is an odd number times a
power of 2 with positive exponent). After canceling these factors of 2, we
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have expressed x as the average of two dyadic rationals with smaller ex-
ponents in the denominator. By the induction hypothesis, each of these is
achievable, so x also is achievable. [ ]

In Chapter 13, we consider decimal and binary expansions of real
numbers in the interval [0, 1]. The dyadic rationals are precisely the real
numbers whose binary expansions terminate.

EXERCISES

8.1. (—) Suppose that x is rational and that a, b, ¢ are irrational. Determine
which statements below must be true. When true, provide a proof; when false,
provide a counterexample.

a) x + a is irrational.

b) xa is irrational.

¢) abc is irrational.

d) (x + a)(x + b) is irrational.

8.2. (—) Let f be a polynomial with rational coefficients. Prove that there is a
polynomial with integer coefficients that has the same zeros as f.

8.3. (—) Consider a, b, c € Q with a # 0. Suppose that ax? + bx + ¢ = 0 has two
solutions. Prove that their product is rational.

8.4. (—) Explain why we assume in Example 8.9 that a and & are not both 0.

8.5. (—) Find the image of the function f: R — R? defined by f(r) = ( }%; %;) .
(Hint: Consider Theorem 8.12.)

8.6. (—) Obtain parametric equations for a line of slope m through (p, q) € R2.

8.7. (—) Show how the triples in Example 8.21 arise in the parametrization of
Pythagorean triples.

8.8. (1) How not to add fractions. Find all (x, y) € R? such that ! + % =1,

x+y

8.9. Prove that a fraction is in lowest terms if and only if its denominator is the
smallest positive number among the denominators of all representatives of the
same rational number.

8.10. (!) Let a/m and b/n be rational numbers expressed in lowest terms. Prove
that (an + bm)/(mn) is in lowest terms if and only if m and n are relatively prime.

8.11. Let x, y be real numbers such that x/y = +2. Simplify (2y — x)/(x — y).

8.12. (!) Suppose that a, b, ¢, d are positive integers with a/b < c/d. Prove that
a/b < (@a+c)/(b+d) < c/d. Interpret this in terms of test scores or batting
averages. Give a geometric interpretation using slopes of lines.
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8.13. Suppose a, b, ¢, d are positive integers with a < ¢ < d and ¢/d < a/b. Prove
that b — a < d — ¢. Prove that this conclusion does not always hold ifa < d < ¢
andc/d <a/b.

8.14. Let S = {(x, y) € R% x2 — y2 = 1}. Obtain parametric equations for the set
of points in § with positive first coordinate. Graph this curve.

8.15. Discuss carefully how symmetry considerations are used in the proof of
Theorem 8.20.

8.16. (!) In the Billiard Problem (Solution 8.10), for each corner of the square
determine the condition on the slope s so that the process ends there.

8.17. (1) Prove that the set of rational numbers is countable.

8.18. (—) Generalize the proof in Example 8.13 to prove that the square root of
every prime number is irrational (do not use the Rational Zeros Theorem).

8.19. (1) Prove thatifr and s are relatively prime, then also 72 and s2 are relatively
prime (see also Exercise 6.18). Use this to prove that the square root of an integer
is irrational unless the root is an integer.

8.20. Let ¢ be an integer, and let f(x) = x® +¢cx® + 1.
a) Prove that the equation f(x) = 0 has rational solutions when ¢ = £2.
b) Prove that the equation f(x) = 0 has no rational solutions when ¢ # +2.

8.21. Let p(x) = 2x® + x% + x + 2. Find all rational zeros of p, and then factor p
to find the rest of the zeros. Graph p to check that your answer is reasonable.

8.22. Use the Rational Zeros Theorem to prove that the kth root of an integer is
not a rational number unless it is an integer.

8.23. Suppose that ax? + bx + ¢ = 0 has a rational solution, where a, b, ¢ are
integers and b is odd. Use the quadratic formula to prove that a and ¢ cannot both
be odd. (Comment: This provides another proof of Theorem 2.3.)

8.24. (+) Let p be a polynomial with integer coefficients and leading coefficient
1. Without using the Rational Zeros Theorem, prove that if p(f) = 0 for some
t € Q,thenr € Z. (Hint: Ifr ¢ Z, write t = m/n with n > 1 and minimal. Let
g =t — |m/n], and use the numerators of {¢*} to obtain a decreasing sequence of
positive integers.)

8.25. (—) Give an example of a Pythagorean triple in increasing order that cannot
be written in the form (r2—s2, 2rs, r2+s?) for integers r, s. (Comment: By Theorem
8.22, the answer can be written in the form (2rs, r2 — 52, r2 + 52). This shows that
both forms are needed.)

8.26. Use the parametrization of Pythagorean triples to prove that every integer
greater than two is a member of a Pythagorean triple not containing 0. (Hint:
Give a construction when n is even and another construction when » is odd. The
fact that (k + 1) — k% = 2k + 1 may be useful.)

8.27. (!) Determine when the sum of two Pythagorean triples (under component-
wise addition) is a Pythagorean triple. (The simple criterion needs no formula.)

8.28. Let x be an integer chosen at random from [20] (each with probability 1/20).
Let y be another integer, independently chosen in the same way.
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a) Compute the probability that x2 + y2 is the square of an integer.
b) (+) Compute the probability that x and y belong to a Pythagorean triple.

8.29. (+) Alternativesproof of characterization of Pythagorean triples. This ex-
ercise develops an alternative proof that every Pythagorean triple has the form
described in Theorem 8.22. Let (a, b, c) be a Pythagorean triple such that a, b, ¢
have no common factor (thus ged(a, b) = ged(b, ¢) = ged(a, c) = 1).

a) Prove that exactly one of a and b is even.

b) Let a be the even member of {a, b}. Prove that (c + »)/2 and (¢ — b)/2 are
relatively prime and are squares of integers.

¢) Given the result of part (b), let (¢ + b)/2 = z% and (c — b)/2 = y%. Prove
thata = 2yz, b =z%2 — y%, and ¢ = 22 + y2.

(Comment: The proof of Theorem 8.22 in the text emphasizes geometry and
the properties of rational numbers. This proof emphasizes divisibility and primes.)

8.30. (+) Solution of the general cubic equation. Consider the equation ax® +
bx?+cx+d=0witha#0anda,b,c,dcR.

a) Determine appropriate constants s, ¢ so that the change of variables x =
s(y + t) reduces solving this equation to solving the equation y® + Ay + B = 0,
where A, B are constants.

b) Determine a constant r such that the change of variables y = z + r/z in
the equation for y reduces it to a quadratic equation in z3.

¢) Solve the resulting quadratic equation for z3, and use the solution to solve
the general cubic equation for x. (Comment: This method is tedious even for easy
cubic equations, and it uses complex numbers even when all the roots are real.
Nevertheless, it does produce the solutions. There is no formula for solving a
general polynomial equation of degree 5 or higher.)

8.31. Let Q* = Q— {0}. Suppose that f: Q* - Q* and that f satisfies f(x +y) =
F@FP/If ) + f(y)] whenever x, y € Q*. Suppose ¢ = f(1). Compute f(x) in
terms of ¢ for every x € Q*. (Hint: Consider the function g = 1/f.)

8.32. (+) A man has a watch with indistinguishable hands. An act of violence
between midnight and the following noon simultaneously kills him and stops his
watch. Can we always determine the time of death from this information if

a) the watch has hour, minute, and second hands?

b) the watch has only hour and minute hands?
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Chapter 9
Probability

We give a precise definition of probability. Probability is an impor-
tant tool for analysis of everyday events and for decision-making. We
introduce the notions of conditional probability, independence, random
variables and expectation, and multinomial coefficients. This enables us
to solve the following problems.

9.1. Problem. Bertrand’s Ballot Problem. Suppose that candidates A
and B in an election receive a and b votes, respectively, with a > b, and
that the votes are counted in random order. What is the probability that
candidate A never trails? ]

9.2. Problem. Medical Testing. Suppose 90% of patients with cancer test
positive on a new test, and 4% of those without cancer test positive. Among
the patients, 2% actually have cancer. Given that a randomly chosen pa-
tient tests positive, what is the probability that he or she has cancer?

9.3. Problem. Bernoulli Trials. Repeated performances of an experiment
with a fixed probability of success are called Bernoulli trials, after Jakob
Bernoulli (1654-1705). When we perform n trials of an experiment that
has probability p of success, and the outcome of one trial cannot affect the
outcome of any other trial, we expect to have about np successes. How
can we make this intuition precise? ]

9.4, Problem. The Coupon Collector. A restaurant gives one of five types
of coupons with each meal, each with equal probability. A customer re-
ceives a free meal after collecting one coupon of each type. How many
meals does a customer expect to need to buy before getting a free meal?

9.5. Problem. Hitting for the cycle. How often does a baseball player get
a single, a double, a triple, and a home run in the same game? In Solution
9.40, we solve a special case for a particular batter. [ ]

170
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PROBABILITY SPACES

In Chapter 5 we introduced an elementary model of probability to
study experiments with n equally likely possible outcomes. For each set A
of possible outcomes, the probability of obtaining an outcomein A is |A] /n.

9.6. Example. When we roll two different six-sided dice, there are 36
equally likely outcomes. In six of these outcomes, the two dice show the
same number. Thus the probability of rolling doubles is 1/6.

When we deal five cards from a standard deck, there are (¥) equally
likely outcomes. The probability of a particular type of poker hand such as
“full house” or “flush” is the proportion of the possible outcomes satisfying
the specified criteria. In Solution 5.16, we computed these probabilities
by counting the hands of the desired type.

When we collect students’ papers and return them at random, we are
performing an experiment whose outcomes are permutations of the pa-
pers, with all permutations equally likely. The probability that no paper
returned to its author is the proportion of the permutations that have no
fixed point; we study this in Chapters 10 and 12. ]

The notion of probability extends to settings where the outcomes are
not equally likely. Let § = {ai,...,qa,} be a finite set of outcomes. As-
sociated with each outcome a; we have a number p; that we view as its
probability. Our intuitive sense of probability requires that these num-
bers be nonnegative and sum to 1. Also, the probability that the outcome
lies in some subset 7 C § should equal }_, . pi.

Our formal model for probability has these properties. It also extends
to situations where the set of outcomes is infinite.

9.7. Definition. A finite probability spaceis a finite set S together with
a function P defined on the subsets of S (called events) such that
a)ForAC S, 0<P(A) <1,

b) P(S) =1, and
¢) If A, B are disjoint subsets of S, then P(A U B) = P(A) + P(B).

Suppose that sets By, ..., B, form a partition of A, meaning that every
element of A appears in exactly one of them (see Chapter 7). By induction
on k, (c) implies that P(A) = fo:l P(B;). In particular, when k = |A| and
each B; contains exactly one element of A, we see that the probability of
an event is the sum of the probabilities of the outcomes contained in it.

9.8. Proposition. (Elementary Properties) If A and B are events in a
probability space S with probability function P, then
a) P(A°) =1— P(A).
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b) P(@) = 0.
¢) PGAUB) = P(A)+ P(B)— P(ANB).

Proof: (a) We have P(A) + P(A°) = P(AUAY) =P(S)=1.

(b) Apply (a) with A = S.

(c) As evident from a Venn diagram, the sets ANB,A—B,and B— A
partition A U B. Thus P(A U B) is the sum of their probabilities. Since A
is the disjoint union of A — B and A N B (similarly B = (B — A) U(AN B)),
we obtain the desired formula from

P(AUB)=[P(A)— P(ANB)1+[P(B)— P(ANB)I+ P(ANB). m

9.9. Example. When we roll two dice, the probability of avoiding doubles
is 1 — (1/6) = 5/6; call this event A. The probability that the sum of the
numbers is divisible by 4 is 1/4, since this occurs on 9 of the 36 possible
equally likely outcomes; call this event B. The probability that at least
one of these two events occurs is not 1/6 + 1/4; we have

P(AUB)= P(A)+P(B)-P(ANB) =&+ -2 =1 .

Our next example continues the theme of counting techniques for
elementary discrete probability and features the use of complementation.

9.10. Solution. Bertrand’s Ballot Problem, due to Joseph Louis Francois
Bertrand (1822-1900). Candidates A and B receive a and b votes, respec-
tively, and we assume that a > b. Counting the votes in random order
could mean that the ballot box contains a + b slips of paper, which can be
removed from the box in (a + b)! equally likely orders. Alternatively, it
could mean that the lists of who received the ith vote are equally likely.
A list such as ABAABAB with final score (a, b) is determined by the posi-
tions of the As, which can be chosen in (“:”) ways, so there are (“:”) lists
with final score (a, b).

In this problem, the two models give the same answer for the proba-
bility that A never trails. Consider the model with (a + b)! outcomes.
Changing the order of paper slips for one candidate does not change
whether the candidate ever trails. Hence the a!b! orderings of the pa-
per slips that correspond to the list ABAABAB give the same answer.
Since each list corresponds to the same number of orderings of slips, the
probability of each list is the same. Under either model, then, it suffices
to count the lists in which A never trails and divide by (“}?).

We use election to mean a list of A’s and B’s. An election is good if
A never trails; otherwise it is bad. To count the good elections with final
score (a, b), we count the bad elections with final score (a, b) and subtract
them from the total. An election is bad if there is a k such that the score
reaches (k, k + 1). The minimal such k is the first time A trails. Modify
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the election after this time by changing every A to a B and every B to an
A. Now A gets b — k — 1 additional votes and B gets a — k additional votes,
so the final score of the new electionis (b — 1, a + 1).

Every election with final score (b — 1, a + 1) is won by B, since a > b.
Therefore, in such an election there is a least k when the score is (k, k+1).
Switching the votes after this point as done previously generates an elec-
tion with final score (a, ). The second map is the inverse of the first,
and this establishes a bijection between the set of bad elections with fi-
nal score (a, b) and the set of all elections with final score (b — 1,a + 1).
Hence there are (“*%) bad elections. To obtain the probability of the good

a+l
elections, we compute

(-G _,_ b _a-b+1
(7 a+tl” a+1

9.11. Remark. Lattice paths and Catalan numbers. The switching ar-
gument in Solution 9.10 is due to Antoine Désiré André (1840-1917).
Graphing the successive vote totals as points in the plane yields a lat-
tice path to (a, b). The path never steps above the diagonal if and only if
candidate A never trails in the election. We can translate the switching
argument into the language of lattice paths; the bijection maps the bad
elections into lattice paths reaching (b — 1, a + 1), via a reflection of the
portion after (k, k + 1) through the line with equation y = x + 1.

[=}]
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In the special case where a = b = n, the number of good paths is
ﬁ(zn”) These numbers are known as the Catalan numbers; we shall
see that they provide the solution to many counting problems (Exercises
36-39, Problem 12.4, Exercises 12.37-12.40). [ ]

In Solution 9.10, we were lucky; the two possible definitions of the
probability space gave the same results. Our next example, also from
Bertrand, begins to suggest the care that is needed. This example has un-
countably many outcomes. In such a situation, it is not possible to assign
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probabilities to individual outcomes. Nevertheless, the notion of proba-
bility space does extend, as long as we define the probability function P
only on an appropriately chosen family of subsets of S.

9.12. Example. Bertrand’s Paradox. Choose a chord of the unit circle at
random; what is the probability that its length exceeds +/3? The answer
depends on the meaning of “at random”. As illustrated, the length of
the chord exceeds +/3 if and only if its midpoint is inside an inscribed
equilateral triangle.

We could place a “spinner” at the center and spin it twice to select
two points on the circumference to be the endpoints of the chord. In this
model, the probability that the chord length exceeds +/3 is 1/3.

Alternatively, we could choose the midpoint of the chord by throw-
ing a dart at the circle that is equally likely to land in regions of equal
area. The midpoint of a chord uniquely determines the chord, and in this
model the probability that the length exceeds +/3 is 1/4. Other reasonable
models yield other values for the probability (Exercise 12). ]

N

CONDITIONAL PROBABILITY

It has been remarked that probability theory is the area of mathemat-
ics in which an expert is most likely to blunder. The explanation may be
that formulating and solving these questions requires precise language,
but the problems often are stated informally and then misinterpreted. We
have already seen that the expression “at random” may have more than
one interpretation. Ambiguous language can cause difficulties.

9.13. Example. Consider the question “The Smiths have two children,
and at least one is a boy; what is the probability that both are boys?” The
correct answer depends on the procedure by which the information “At
least one is a boy” is obtained. We assume that when we list the older
child first, the four possibilities Boy-Boy, Boy-Girl, Girl-Boy, Girl-Girl are
equally likely. Hence 1/3 of the families having at least one boy have two
boys. On the other hand, the speaker may have encountered only the
older child, noted that it was a boy, and said “at least one is a boy”. If the
information arose in this way, then the answer is 1/2. ]
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Care must be used in stating what is “given” when a probability is to
be computed. The given informationis a condition that defines a restricted
experiment, and this leads to the notion of conditional probability.

9.14. Definition. Let A and B be events in a probability space S. When
P(B) # 0, we define the conditional probability of A given B to be
-’%; we write this as P(A|B).

The conditional probability of A given B is the result of normalizing
probabilities to restrict the probability space to the subset B. Given that
B occurs, the probability of B should be 1, and the probability for each
subset of this event is scaled up accordingly.

Conditional probability explains the confusion in Example 9.13. By
stating that “[given that] at least one [child] is a boy”, we are using condi-
tional probability. The answer depends on whether the given event is “the
first child is a boy” or “the children are not both girls”. Understanding of
conditional probability is needed in Exercises 8—11.

9.15. Definition. Events A and B are mutually exclusiveif ANB = @.
They are independent if P(A N B) = P(A) - P(B).

The definition of probability space yields P(A U B) = P(A) + P(B)
when A and B are mutually exclusive. Independence is related to con-
ditional probability. When A and B are independent and P(B) # 0, the
computation below shows that the probability of A is unaffected by know-
ing whether B occurs; this justifies the term “independent”.

P(ANB) P(A)P(B)
P(B) = P(B)

P(A|B) = = P(A)

9.16. Example. Bernoulli trials. We flip a coin n times, where the prob-
ability of heads is p on each toss. The probability space consists of the
n-tuples from {H, T}. The events H; and H; that correspond to heads on
the ith flip and jth flip are independent when i # j. Thus the probability
of a particular list with k heads and n — k tails is p*(1 — p)"*~*.

The lists of length n are the elements of the space; they yield mutu-
ally exclusive events. The event “obtaining k& heads” is the union of the
events for particular lists with &k heads. Its probability is the sum of their
probabilities. Since there are (}) lists having k heads, the probability of
the event “obtaining k heads” is (}) p*(1 — p)"~*. [

The next example underscores the distinction between “the fraction
of students in each year that are math majors” and “the fraction of math
majors that are in each year”. We use it to motivate a general formula
about conditional probability.
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9.17. Example. Suppose that all college students are freshmen, sopho-
mores, juniors, or seniors. Given the fractions of each year’s students that
are math majors, can we determine the fraction of math majors that are
seniors? We can if we also know the number of students in each year.

In the four classes, suppose that the fractions of students that are
math majors are 1/3, 1/4, 1/5, 1/6 and that the populations in the four
classes are 1500, 1400, 1250, 1200, respectively. We can now compute the
populations in the table below. The total number of math majors is 1300,
and thus the fraction of math majors that are seniors is 2/13. ]

Fr So Jr Sr Total
Math 500 350 250 200 1300
Other 1000 1050 1000 1000 4050
Total 1500 1400 1250 1200 5350

The method in Example 9.17 generalizes to a common situation in-
volving conditional probability. We want to condition on an event A (in
this case being a math major), but we are not given the probability of A.
On the other hand, we are given the conditional probability of A with re-
spect to each set in some partition Bi, ..., By of the probability space (in
this case the four school years).

9.18. Proposition. (Bayes’ Formula) Let By, ..., B; be mutually exclu-
sive events whose probabilities b; = P(B;) are known and sum to 1.
If A is an event such that the conditional probabilities a; = P(A|B;)
are known, then
a:b;
> ab;

Proof: The definition of conditional probability yields P(A N B;) =

P(A|Bj)P(B;) = ajb;. We then compute

P(B, N A) _ P(A N B,) _ a,'b,' -
PA) >, P(ANB)) Y aib;’

P(B;|A) =

P(B;|A) =

9.19. Solution. Problem 9.2 describes a typical scenario in the interpre-
tation of medical testing. To compute the conditional probability, we need
the proportion of patients testing positive that actually have cancer. Let
“4+” and “C” denote the events of testing positive and having cancer; we
seek P(C|+). Bayes’ Formula provides the computation from the data
of Problem 9.2. The probability of having cancer given a positive test is
surprisingly small, because the healthy population is so large.

P(+andC) _ P(+|C)P(C)
P(+)  P(+IO)P(C)+ P(+|-C)P(-C)

PCl+) =
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Using the data given, we thus have P(C|+) = 550 oe35 = s ~ -315.
This answer is reasonable. Of 100 people, about 4 without cancer test
positive, and about 2 with cancer test positive, so among the roughly 6
testing positive, about 1/3 have cancer. ]

We provide one more example to show the care that must be exercised
when making statements about ratios and probabilities.

9.20. Example. Simpson’s Paradox. Many people believe that if A per-
forms better than B in every category, then the overall performance of A
must be better than that of B. We present a counterexample using airline
performance.T The phenomenon is called Simpson’s Paradox.

Alaska America West
Destination % on time # arrivals % on time # arrivals
Los Angeles 88.9 559 85.6 811
Phoenix 94.8 233 92.1 5255
San Diego 91.4 232 85.5 448
San Francisco 83.1 605 71.3 449
Seattle 85.8 2146 76.7 262
Total 86.7 3775 89.1 7225

In 1987, airlines in the United States had to report the percentage
of their flights that arrived on time at each of the nation’s 30 busiest
airports. Alaska Airlines served only five of these airports and performed
better than America West at every one of them, but America West had a
higher overall on-time average at these airports.

The explanation is that on-time performance depends on weather.
Alaska Airlines serves primarily Seattle, with habitual bad weather;
America West serves sunny Phoenix. Although Alaska always did bet-
ter under comparable conditions, the overall statistic for America West
is dominated by service under easy conditions, while Alaska is judged
mostly by the airport where weather prevents good performance. ]

Other instances of Simpson’s Paradox appear in Exercises 19-20.

RANDOM VARIABLES AND EXPECTATION

We often associate a number with each outcome of an experiment;
this defines a function on the probability space. We think of its “expected”
value as the average of its values over many trials.

TA. Barnett, How numbers can trick you, Technology Review (1994), 38—45.
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9.21. Definition. Let S be a finite probability space. A random variable
is a function X: S — R. Each level set Ix (k), the subset of S on which
X takes the value k, is an event. We write P(X = k) for the probability
of this event. The expectation or expected value of X, written
E(X),is Y , k- P(X = k). In terms of individual points in the space,
we can also write E(X) = Y_ ¢ X(a)P(a).

9.22, Example. Average grade. We select a student at random from a
class of n students, with each student having probability 1/n of being cho-
sen. Suppose that the numbers of students receiving grades A, B,C, D, F
area, b, c,d, f,respectively, wherea+b+c+d+ f = n. Let X be the ran-
dom variable whose value is the numerical value of the chosen student’s
letter grade. The average grade of the studentsis (4a+3b+2c+1d+0f)/n,
which is the expectation E(X). [ ]

9.23. Solution. The binomial distribution. We flip a coin n times, inde-
pendently; the probability of heads is p on each toss. Let X be the number
of heads obtained; this is a random variable with the possible values
0,...,n. As computed in Example 9.16, the probability that X equals &
is (})p*(1 — p)*™*, since there are (}) arrangements with k heads, each
having probability p*(1 — p)*~*. To compute the expectation, we have

n n _ 1
E(X) = Zk(:)p"a -p)t= Zn<: ~ l)p"a -p)"*

k=0 k=1

_ ~(n—1\ (n—=1)~(k=1) _ n-1_
—npk;(k_l)p 1-p) =nplp+ Q- p)I"~" =np.

Here we dropped the term for £ = 0 (it equals 0), used Lemma 5.27 to
extract the factor of n, and applied the Binomial Theorem. ]

There is a simpler way to compute E(X) in Solution 9.23, using a
fundamental and intuitive property of expected value.

9.24. Example. The expected total number of newspapers sold daily at
newsstands in New York is the sum of the expected number sold at each
individual newsstand. We can compute the total sales for a year in two
ways. We can sum the sales for each day, or we can sum the sales for
each newsstand. We then divide by the number of days to obtain the
expectation. ]

9.25. Proposition. (Linearity of Expectation) Let X and Xq,..., X, be
random variables on a finite probability space.
a)Forc e R, E(cX) = cE(X).
b) EX1+---+ X») = E(X1) + - + E(X,).
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Proof: Both computations use the definition of expectation and the dis-
tributive law. For (a),

E(cX) = Y ,escX(@) = ¢ ,.sX(a) = cE(X).

For (b), we also interchange the order of summation to compute

E(X) = ) X(a)P(@) = Z[Z X.-(a)] P(a)

aes aes | i=1

= Z[Z X,-(a)P(a)] = iE(Xi) L
i=1

i=1 | aeS

9.26. Solution. The binomial distribution, revisited. When we perform
n trials with success probability p, we can define a variable X; for the ith
trial, with X; = 1 if this trial is a success, and X; = 0 if it is not. Letting
X be the total number of successes, we have X = ) X;. Each X; has
expectation p, since E(X;) =1- p+0-(1 — p) = p. By the linearity of the
expectation, E(X) = Y E(X;) = np. ]

The conclusion in Solution 9.26 does not require independence for the
various events H; of getting heads on the ith trial. This simpler com-
putation thus gives a stronger result than the computation in Solution
9.23, because there the formula for the probabilities of the sample points
depends on independence of the trials.

The random variables X; in Solution 9.26 are called indicator vari-
ables because their value (0 or 1) indicates whether a particular event
happens. Their use often simplifies the computation of expectation.

9.27. Application. Suppose that A, B, and n other people line up in
random order. What is the expected number of people between A and B?

For each i, let X; = 1 if the ith person stands between A and B, and
let X; = 0 otherwise. The expected number of people between A and B
is then E(X), where X = )  X;. Since E(X;) = 1/3 for each i, we have
E(X) =) E(X;)=n/3. [ |

Suppose we are performing Bernoulli trials with independent success
probability p and stop the experiment when we first obtain a success.
This leads to an infinite probability space. Let X be the number of trials
performed in the experiment. The probability that X takes the value k
when we perform the experiment is p(1 — p)*~1.

We assume that the experiment always has an outcome; in other
words, the probability of never obtaining a success is 0. This is consistent
with the statement that 3, p(1 — p)¥ ! = 1.
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9.28, Definition. Given a number p with 0 < p < 1, let X be a random
variable defined on N by P(X = k) = p(1 — p)*"1. We say that X is a
geometric random variable with parameter p.

The sum ), p(1 — p)*~! has infinitely many terms. In Chapter 14
we discuss the precise meaning of infinite summation. Here we treat the
issue informally to discuss the expectation of a geometric random variable
X. In light of Definition 9.21, we define E(X) by the infinite series

E(X) =Y 20kP(X =k) = Y pookp(l — p)*L.

Our informal argument to evaluate this sum uses properties of infinite
series from Chapter 14 (such as the distributive law). The discussion
assumes that the sum has a value; the methods of Chapter 14 provide
several proofs of this.

9.29. Proposition. In Bernoulli trials with success probability p, the
expected number of trials to obtain the first success is 1/p.

Proof: (sketch) The desired value is E(X) for a geometric random variable
X with parameter p. We want to show that } ;>0 kp(1 — p)*~1 =1/p.

Consider (1 —2x +x%) 322 kx*~1. We write the result of the multipli-
cation by collecting the terms for each power of x. For x?, the coefficient
is 1. For x1, the coefficientis —2-1+1-2 = 0. For k > 2, the coefficient
is 1(k + 1) — 2(k) + 1(k — 1) = 0. Everything cancels except the constant
term, and therefore the product is 1.

From (1 — x)2 Y732, kx*™! = 1, we obtain Y2, kx*™! = 71, when
x # 1. Setting x = 1 — p and multiplying by p completes the proof. ]

9.30. Solution. The Coupon Collector. We must obtain all n coupons, first
one, then another, then a third, etc.

Let X, be a random variable giving the number of meals eaten to ob-
tain the next coupon when k coupons remain. The probability of getting
a new coupon at the next meal is k/n. Thus the wait for a new coupon is
the wait for the first success among Bernoulli trials with success proba-
bility k/n. The number of trials, X;, has the geometric distribution. By
Proposition 9.29, E(X;) =n/k.

The total number of meals to obtain all coupons is X = ) ;_, Xi. By
the linearity of the expectation, E(X) = n) ,_,1/k. When n = 5, for
example, the expectation exceeds 11. ]

Our final application of expectation uses probability in a different
way. Instead of computing a probability in a given experiment, we are
free to choose a probability to get the best result.

In many games, including professional sports, we have a set of op-
tions. We define a probability space on these options, assigning each some
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probability unknown to our opponent. Suppose that we have two options,
with payoffs @ and b. If we assign the probabilities x and 1 — x to the
options, our expected payoffis ax + b(1 — x). We want to choose x to max-
imize the expected payoff. The difficulty arises when the payoffs a and &
depend on the opponent’s choices.

9.31. Application. The Odd/Even Finger Game. This game has two
players, A and B. On each play of the game, each player shows 1 or 2 fin-
gers. The payoffs from A to B appear below for the four possible outcomes.
The payment is the sum of the fingers showing; A wins it when the total
is even, and B wins it when the total is odd.

A shows1 A shows2
B shows 1 -2 +3
B shows 2 +3 —4

Although this seems like a fair game, it favors B. If B always shows 1
or always shows 2, then A can use this information to win. Hence B should
show 1 with some probability x and show 2 with probability 1 — x. Before
each play, B privately performs an experiment with success probability x
to determine how many fingers to show. Player A may know the strategy
x, but A does not know what B will show on a particular play.

Solution 1. Knowing the strategy x, A can compute the expected pay-
ment to B under each option and play only the column with the smaller
expectation. Hence x guarantees for B the minimum of the expectations
in the two columns. These are —2x + 3(1 — x) and 3x — 4(1 — x), which
simplify to 3 — 5x and 7x — 4. Player B chooses x to maximize their min-
imum. Since their graphs cross, the minimum is maximized when they
are equal; 3 — 5x = 7x — 4 yields x = 7/12. By choosing x = 7/12, B
guarantees average payoff per game of at least 1/12.

On the other hand, Player A can limit the average payoff to 1/12.
When A plays column 1 with prebability y, the expected payoff to B is at
most max{—2y + 3(1 — y), 3y — 4(1 — y)}. Player A chooses y to minimize
this. The minimum occurs at y = 7/12, where the two values equal 1/12.

Solution 2. We treat the players symmetrically, with B using strategy
x and A using strategy y. The expected payoff (to B) is

—2xy +3y(1—x)+3x(1—y)—4(1-y)(1-x),

which equals 7x — 4 4+ y(7 — 12x). Again the value is 1/12 when x = 7/12.
If x < 7/12, then A does best with y = 0, and the expectation 7x — 4 is
then less than 1/12. If x > 7/12, then A does best with y = 1 to make the
payoff 3 — 5x, again less than 1/12. We have proved that x = 7/12 is the
optimal choice for B. Choosing x = 7/12 makes the value independent of y.
This corresponds to making the column expectations equal in Solution 1.

We can rewrite the expectation as 7y — 4 + x(7 — 12y). By a similar
analysis, choosing y = 7/12 is optimal for Player A. ]
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MULTINOMIAL COEFFICIENTS

Many counting problems that involve two options generalize natu-
rally to questions about m options, where m € N. In the Ballot Problem,
there are (";:b) elections that reach the final score (a, b)). How does this
generalize when we have m candidates and the final score is (a,, ..., a,)?
We have seen that the binomial coefficient (2) counts n-tuples having k
entries with one value and n — k entries with another. We have also seen
that it is the coefficient of x*y"~* in the expansion of (x + y)*. We gener-
alize these questions to m candidates or m types of letters or polynomials

with m variables.

9.32. Definition. Suppose ki, ..., k, are nonnegative integers summing
to n. The multinomial coefficient, written (k;. ".km), is the number
of ways to arrange n objects of m types in a row, where there are k;
objects of type i.

The binomial coefficient counts arrangements of two types of objects.
Suppose we have three types of objects. If our objects are a, b, b, ¢, ¢, then
after placing a in one of five possible locations, there are six ways to com-
plete an arrangement, since we choose the positions for the two b’s from
the remaining four positions. Hence (,>,) = 30. Generalizing this, we
can choose positions for the first type of object, then positions for the sec-

ond type, and so on, to obtain the formula (, ", ) = (;)("") (") - .

In Theorem 9.33, we provide a direct argument for a simpler formula.

9.33. Theorem. Ifk,, ..., k, are nonnegative integers summing to n, then

n _ n!
kiyoooskm)  kile--kn!

Proof: Let M be the number of arrangements consisting of k; letters of
the ith type, for each i. We can turn such an arrangement into an ar-
rangement of distinct objects by putting labels (e.g., subscripts) on the &;
letters of type i, for each i. For each i in a particular arrangement, we can
assign the labels in k;! ways. Hence in total we have formed M []|_, k;! ar-
rangements of n distinct letters. Since we have made the letters distinct,
this must equal n!, the total number of arrangements of n distinct letters.
Hence M = n!/[]/L, ki!. n

9.34. Example. Roll a balanced six-sided die 21 times. What is the prob-
ability of rolling exactly one 1, exactly two 2s, and so on, up to exactly six
6s? Answer: (;, 4 5 5)(1/6)% = 0.0000935969. .

The name “multinomial coefficient” arises from the expansion of poly-
nomials with several variables.
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9.35. Corollary. The number (k
expansion of (x; + - -+ + x,)".

) is the coefficient of x{! - - - x4 in the

.....

Proof: The monomial x'l‘1 - -+ - xkm arises once in the expansion of
(x1+ -+ + xp)" for each way to arrange a set consisting of k; copies of
x; for each i. Each such arrangement corresponds to a term in the expan-
sion of the product. The jth position in the arrangement corresponds to

the term chosen from the jth factorin (x; + - -+ x,) - (x1+-+ -+ x). A

9.36. Example. Trinomial expansion.

(x+y+2)° =x3+y%+ 23 + 3x%y + 8x%z 4+ 8y%z + 3y%x + 32z%x + 3z%y + 6xyz B

9.37. Corollary If pis prime and ) ", k; = p with 0 < k; < p, then p
divides (,, 7, ).

Proof: Because the multinomial coefficient is the size of a finite set, The-
orem 9.33 implies that M = p!/[]iL, k! is an integer. Writing this as
p! = MT]_, k!, we observe that the left side is divisible by p. The fac-
torials on the right side do not have p as a factor. Since p is prime, this
implies that p divides M. ]

.....

Corollary 9.37 yields a remarkably short proof of Fermat’s Little The-
orem, due to Gottfried Wilhelm Leibniz (1646-1716). Exercise 6.37 re-
quests a related proof using the Binomial Theorem.

9.38. Example. Fermat’s Little Theorem. To prove that a?~! = 1 mod p
when p is prime and g is an integer not divisible by p, we prove that a? =
a mod p. Modular computation allows us to assume that a is positive.
Expressing a as Z"_l 1, we consider the expansion of (1+- - - + 1)?, which
we treat as (x1 + -+ x,)? with each x; equal to 1. By Corollary 9.35, the
coefficient of x}" - x"" is (, ? , ). For each term x/, in which the exponents
on the variables other than x; are 0, the coefficient equals 1; there are a
of these. By Corollary 9.37, all the other coefficients are divisible by p.
Hencea? = (14 . --+ 1) =a mod p. [ ]

9.39. Proposition. (The Multinomial Distribution) Suppose an experi-
ment has m possible outcomes, with p; being the probability of the
jth outcome and 377, p; = 1. If we perform n independent trials,
then the probability that for each j the jth outcome occurs exactly k;

times is (, " p1 vo plm.

Proof: There are m" possible lists of outcomes for n successive trials.
Since the trials are independent, the probability of each particular list in
which the jth outcome occurs precisely k; times is [])_, pj The number
of lists of this type is the number of ways to arrange tiiese outcomes (k; of
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The different lists are mutually exclusive events, so the probability is the
number of lists of this type times the probability of each one. ]

9.40. Solution. Hitting for the cycle. Our baseball player bats randomly,
meaning that the at-bats are independent trials. An at-bat produces a
single with probability .15, a double with probability .06, a triple with
probability .02, a home run with probability .07, and otherwise an out.
This describes a good hitter, whose batting average is .300 and “slugging
average” (expected number of bases per at-bat) is .610. “Hitting for the
cycle” means getting at least one hit of each type in a single game. What
is the probability that this player hits for the cycle if he bats exactly five
times in a game?

There are five ways this can occur. There can be one of each hit and
one out, or two of one type of hit and one each of the three others. We use
the multinomial distribution to compute each probability:

one of each hit, one out: 5!(.15)(.06)(.02)(.07)(.70) = 0.0010584
two singles: (5!/2)(.15)2(.06)(.02)(.07) = 0.0001134

two doubles: (5!/2)(.15)(.06)2(.02)(.07) = 0.00004536

two triples: (5!/2)(.15)(.06)(.02)2(.07) = 0.00001512

two home runs: (5!/2)(.15)(.06)(.02)(.07)2 = 0.00005292.

These events are mutually exclusive, so we add the probabilities, ob-
taining the answer 0.0012852, which is about 1 in 800. Actually, this
overestimates the player’s probability of hitting for the cycle in a given
game (see Exercise 31). ]

EXERCISES

Exercises 1-6 consider events A and B in a probability space S. In each
exercise, determine whether the statement is true or false. If true, provide a
proof; if false, provide a counterexample.

9.1. If A C B, then P(A) < P(B).
9.2, If P(A) and P(B) are not zero, and P(A|B) = P(B|A), then P(A) = P(B).

9.3. If P(A) and P(B) are not zero, and P(A|B) = P(B|A), then A and B are
independent.

9.4. If P(A) > 1/2 and P(B) > 1/2, then P(AU B) > 0.
9.5. If A, B are independent, then A and B¢ are independent.
9.6. If A, B are independent, then A° and B¢ are independent.

9.7. Determine when an event and its complement are independent.
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9.8. (—) A man goes to his favorite restaurant often. With probability 1/2, he
orders the pasta special. With probability 1/2, he orders the fish special. When
he orders the pasta special, the probability is 1/2 that it is out of stock. When he
orders the fish special, the probability is 1/2 that it is out of stock. What is the
probability that the dish he orders is out of stock? Generalize the problem using
variables for the probabilities.

9.9. Each of three containers has two marbles; one contains two red marbles, one
contains two black marbles, and one contains one red and one black. A container
is selected at random (each equally likely), and one of the two marbles inside is
selected at random (each equally likely). Given that the selected ball is black,
what is the probability that the other ball in its container is black?

9.10. We roll two dice, one red and one green. Under each assumption below,
what is the probability that the roll is double-sixes?

a) The red die shows a six.

b) At least one of the dice shows a six. Does the method of obtaining this
information affect the answer?

9.11. In a famous game show on television, a prize is placed behind one of three
doors, with probability 1/3 for each door. The contestant chooses a door. The host
then opens one of the other doors and says “As you can see, the prize is not behind
this door. Do you want to stay with your original guess or switch to the remaining
door?” When the contestant has chosen a wrong door, the host opens the other
wrong door. When the contestant has chosen the right door, the host opens one of
the two wrong doors, each with probability 1/2.
Show that the contestant should switch.

9.12. (+) Bertrand’s Paradox. In Example 9.12 (generating a random chord of
the unit circle), let p be the probability that the length of the chord exceeds +/3.

a) Suppose the endpoints of the chord are generated by two random spins on
the circumference of the circle. Prove that p = 1/3. (Assume that spinner points
to an arc with probability proportional to the length of the arc.)

b) Suppose the midpoint of the chord is generated by throwing a dart at the
circle. Prove that p = 1/4. (Assume that the probability the dart lands in a region
is proportional to the area of the region.)

c) Devise a model for generating the chord that yields p = 1/2.

9.13. From n equally spaced points on a circle, a triple of three distinct points is
chosen at random. What is the probability that they form an equilateral triangle?
An isosceles triangle? A triangle with sides of distinct lengths?

9.14. In Bertrand’s Ballot Problem (Problem 9.1), suppose the outcome is (a, b),
with @ > b, and the votes are counted in random order. What is the probability
that A is always ahead of B? What is the probability that the score is tied at some
point during the election after the beginning?

9.15. (+) Let m Os and n 1s be placed in some order around a circle. A position
with a 0 is good if every arc of the circle extending clockwise from there contains
more 0s than 1s. Prove that every arrangement of the elements on the circle has
exactly m — n good positions. Apply this to solve Bertrand’s Ballot Problem.
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9.16. Let X;, X3, X3 be random variables such that P(X; = j) = 1/n for (i, j) €
[3] x [n]. Compute the probability that X; + X2 + X3 < 6 given that X; + X, > 4.
Assume that P(X1 =da, X2 =as, Xs = a3) = P(X] = al)P(Xz = az)P(X;; = 03).

9.17. The fraction of the games that a tennis player wins against each of her four
opponents is .6, .5, .45, .4, respectively. Suppose that she plays 30 matches against
each of the first two and 20 matches against each of the last two. Given that she
wins a particular match, what is the conditional probability that it is against the
ith opponent, for i € {1, 2, 3, 4}?

9.18. Half the females and one-third of the males in a class are smokers. Also,
two-thirds of the students are male. What fraction of the smokers are female?

9.19. In baseball, “batting average” is defined as the fraction “Hits/(At-bats)”.
Consider two players A and B. Suppose their performance in day games and night
games is as follows:

Day Night
A B A B
Hits a c w oy
At-bats b d x z

Find values for a, b, c,d, w, x, y, z so that A has a higher batting average than B
in both day games and night games but B has a higher batting average overall.

9.20. (!) Consider universities H and Y, each having 100 professors. Construct an
example where, in each of the categories “assistant professors”, “associate profes-
sors”, and “full professors”, the proportion who are women is higher at H than at
Y, and yet Y has more female professors than H.

9.21. In bowling, a strike occurs when the bowler knocks down all the pins in one
roll. A perfect game consists of 12 consecutive strikes. Suppose that on each roll
a bowler has probability p of rolling a strike. What must be the value of p so that
the probability of a perfect game is .01? Use a calculator to estimate the answer.

9.22. Suppose that A, B, and n other people stand in a line in random order. For
each k with 0 < k < n, find the probability that exactly k people stand between A
and B. Check that the sum of these probabilities equals one.

9.23. Beginning with A, players A and B alternate flipping a coin that has prob-
ability p of showing heads. The first player to get heads wins. Let x be the
probability that A wins. Determine x as a function of p. Evaluate the formula in
the special case of a fair coin, p = .5. (Hint: Use conditional probability to obtain
an equation for x.)

9.24. Consider a dial having a pointer that is equally likely to point to each of n
regions numbered 1,2, ..., n in cyclic order. When the selection is k, the gambler
receives 2* dollars.

a) What is the expected payoff per spin of the dial?

b) Suppose that the gambler has the following option. After the spin, the
gambler can accept that payoff or flip a coin to change it. If the coin shows heads,
the pointer moves one spot counterclockwise; if tails, it moves one spot clockwise.
When should the gambler flip the coin? What is the expected payoff under the
optimal strategy?
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9.25. (+) Consider n envelopes with amounts a4, ..., a, in dollars, where a; <

- < a,. A gambler is presented two successive envelopes, with the probability
being p; that the envelopes contain g; and a;, dollars, for 1 <i < n — 1. He opens
one of these two envelopes at random and sees what it contains. He can then
either keep that amount or switch to the other envelope. Suppose that he sees a;
dollars. In terms of the data of the problem, determine whether he should switch.

9.26. Suppose X is a random variable that takes values only in [r]. Prove that
EX)y=)Y,_, P(X =k).

9.27. A drunk has n keys, and only one will open the door. He tries keys at
random. Under each model below, what is the expected number of selections until
he opens the door?
a) He selects keys in a random order (without replacement) until one works.
b) After each mistake, he replaces the key and selects randomly again.

9.28. (!) Suppose that n pairs of socks are put into the laundry, with each sock
having one mate. The laundry machine randomly eats socks; a random set of
k socks returns. Determine the expected number of complete pairs of returned
socks. (Hint: Use the linearity of expectation.)

9.29. Suppose that 2n people are partitioned into pairs up at random, with each
partition being equally likely. If the set consists of # men and n women, what is
the expected number of male-female couples?

9.30. How many arrangements are there of the letters in MISSISSIPPI?

9.31. (For baseball enthusiasts.) Explain why the computation in Solution 9.40
overestimates the probability that the batter hits for the cycle in a given game.

9.32. (!) Find one polynomial p such that p(n) = 3" forn = 0, 1,2, 3,4. (Hint:
Express 3" as (1 + 1 + 1)" and use Theorem 9.33, letting k3 = n — k; — k3.)

9.33. Consider an experiment in which all the monomials in k variables with to-
tal degree n are equally likely to occur (0 is allowed as an exponent).

a) Determine the probability that all k variables have positive exponent in
the chosen monomial.

b) For (n, k) = (10, 4), determine the probability that the exponents are dif-
ferent. (Here 0 is allowed as an exponent.)

9.34. We have six dice; faces are equally likely to appear when a die is rolled.
Each die has three red faces, two green faces, and one blue face. We roll the six
dice. Derive a formula for the probability that we get a red face on three dice, a
green face on two dice, and a blue face on one. (Hint: The answer reduces to a
fraction with denominator 36.)

9.35. Determine the coefficient of x*y!6 in the expansion of (x + xy + y)6. Deter-
mine the coefficient of x*y® in the expansion of (x% + xy + y?).

9.36. Let A be the set of lattice paths from (0, 0) to (n, n) that do not move above
the line given by y = x. Let B be the set of nondecreasing functions f : [n] — [n]
such that f(i) <i for all i. Establish a bijection from A to B.

9.37. Let a, denote the number of lattice paths of length 2n that never step above
the diagonal (these end at some point (k, 2n — k) with k > n). Prove that a, = (2").

n
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9.38. A ballot list of length 2n is a binary 2n-tuple (b, . . ., bg,) such that for each
i, the number of 1sin {b, ..., b;} is at least as large as the number of 0s. In the
language of Solution 9.10, ballot lists are equivalent to “good elections” with total
score (n, n). Establish bijections from the set of ballot lists of length 21 to each of
the sets below.

a) 2n + 1-tuples of nonnegative integers in which consecutive entries differ
by 1 and a; = ag,1 = 0.

b) Arrangements of 2n people in 2 rows of length n so that heights are in-
creasing in each row and column. (Example: (;5¢°) is such an arrangement, where

the people are 1 through 2n in increasing order of height.)

9.39. (+) Place 2n points on the boundary of a circle. Establish a bijection to prove
that the number of ways to pair up the points by drawing noncrossing chords
equals the number of ballot lists of length 2n.

9.40. The Finger Game (Application 9.31).

a) Which values of x in the interval [0, 1] guarantee a positive expectation
for B no matter what A does?

b) We have seen that when each player shows one finger with probability
7/12, B expects to win an average of 1/12 dollars per game. With these strategies,
what proportion of the games does B expect to win?

9.41. Let (: Z) record the payoffs from A (column player) to B (row player) in a
game in which each player has two options. Determine the conditionson a, b, ¢, d
so that playing each option with probability 1/2 will be optimal for each player.

9.42. Let (: Z) record the payoffs from A (column player) to B (row player) in
a game in which each player has two options. In terms of a, b, c, d, determine
the maximum amount that B can guarantee receiving by choosing x € [0, 1] and
playing the first row with probability x and the second with probability 1 — x.

(Hint: There are several cases, depending on the relative values of a, b, ¢, d.)




Chapter 10

Two Principles of Counting

In this chapter, we study two proof techniques in discrete mathemat-
ics, the Pigeonhole Principle and the Inclusion-Exclusion Principle. We
consider these together because both are fairly easy to prove but have ele-
gant applications that may require some cleverness to discover. They also
can make it possible to avoid lengthy analysis by cases.

The Inclusion-Exclusion Principle is used to solve counting problems.
The Pigeonhole Principle is a principle of counting in the sense that it con-
siders cardinalities of sets, but its applications are to existence problems
and extremal problems rather than to enumerative problems.

THE PIGEONHOLE PRINCIPLE

“Of three ordinary people, two must have the same sex.”T The Pi-
geonhole Principle is also called the “Dirichlet drawer principle” in honor
of Peter Gustav Lejeune-Dirichlet (1805-1859). It implies that extract-
ing n + 1 shoes from a closet containing n pairs of shoes must produce a
matched pair of shoes; they cannot all come from different pairs.

We proved a version of the Pigeonhole Principle in Chapter 2: in any
set of real numbers, some number must be at least as large as the aver-
age. We have made arguments already using the essence of the principle
(see Exercise 4.44, Solution 5.24, Theorem 6.21, and Lemma 7.27). The
principle itself is elementary; the subtlety arises in the applications.

10.1. Theorem. (Pigeonhole Principle) Placing more than kn objects into
n classes puts more than k objects into some class.

TThis observation is attributed to Professor D. J. Kleitman of the Mas-
sachusetts Institute of Technology.

189
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Proof: We prove the contrapositive. If no class has more than & objects,
then the total number of objects is at most kn. This uses the property,
proved by induction in Proposition 3.12, that the n inequalities m; < k can
be summed to obtain the inequality };_, m; < kn. [

To apply the Pigeonhole Principle, we must determine what should
play the role of the objects and what should play the role of the classes.
Sometimes the Pigeonhole Principle pops up in proof by contradiction.

10.2. Example. Existence of multiplicative inverses modulo p. If a and p
are relatively prime, then there exists some b € {1,..., p — 1} such that
ab =1 mod p. Otherwise, a, 2a, ..., (p — 1)a fall into the p — 2 nonzero
congruence classes other than 1. By the Pigeonhole Principle, two fall in
the same class. If ia and ja fall in the same class, then ia = ja mod p
yields p|(i — j)a. Since a and p are relatively prime, this implies p|(i — j)
(by Proposition 6.6), which implies i = j (since they are less than p),
which is a contradiction. ]

10.3. Example. A society of friends. Suppose that “being friends” is a
symmetric relation. We prove that in any set S of people with |§| > 2,
there must be two people that have the same number of friends in S. If
|S| = n, then each person in S has between 0 and n — 1 friends in S.
We cannot have a person with 0 friends and a person with n — 1 friends,
however, because a person with n — 1 friends is a friend of everyone else.
Hence at most n — 1 distinct numbers of friends arise among the n people,
and some pair must have the same total. ]

10.4. Example. Midpoints between integer points. Given five integer
points in the plane, the midpoint of the segment joining some pair of them
is also an integer point (an integer point is one with integer coordinates).

The midpoint of the segment between integer points (a, b) and (c, d)
is (%<, %). This is an integer point if and only if a and ¢ have the same
parity (both odd or both even) and » and d have the same parity. This
suggests putting the integer points into four classes by the parity of their
x and y coordinates: (odd, odd), (odd, even), (even, odd), and (even, even).
With five points, we must have two in the same class, and then the seg-
ment joining them has an integer midpoint. With four points, we can have
one in each class and avoid having an integer midpoint. ]

10.5. Example. Forcing divisible pairs. If S is a set of n + 1 numbers in
[2n], then S contains two numbers such that one divides the other. This
result is best possible in that the set of n numbers {n + 1,n + 2, ..., 2n}
has no such pair. To apply the Pigeonhole Principle, we partition [2n]
into n classes such that for every pair of numbers in the same class, one
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divides the other. Recall that every natural number has a unique rep-
resentation as an odd number times a power of two. For each k, the set
{(2k — 1)2/-1: j > 1} has the desired property; the smaller of any pair in
this set divides the larger. Since there are only » odd numbers less than
2n, we get the right number of classes. Explicitly, the kth class consists of
those numbers in {2/~1(2k — 1): j € N} that are at most 2n. [ ]

The preceding examples could have been phrased as extremal prob-
lems: What is the largest number of integer points in the plane such that
no segment joining two of them has an integer midpoint? What is the
largest size of a subset of [2n] such that no element divides another? The
Pigeonhole Principle establishes a bound, and a construction shows that
the bound is best possible.

In such a problem, it does not suffice to present the construction and
show that no element can be added; this does not forbid larger configu-
rations constructed in other ways. For example, to build a large set that
avoids divisible pairs in Example 10.5, it would be reasonable to choose
primes. When n = 5, we pick the set {2, 8, 5, 7} in this way, at which point
we cannot add any more elements from [10] without creating a divisible
pair. That does not prove that the largest such set has size 4, and in-
deed {6, 7, 8, 9, 10} is a larger example. To solve an extremal problem, our
proof must show that all possible examples satisfy the bound.

10.6. Example. Longest monotone sublist. Consider a list of n? + 1 dis-
tinct numbers. A subset of the positions forms a monotone sublist if
the numbers in those positions form an increasing list or a decreasing list
when taken in order. For example, in the list (3,2,1,6,5,4,9, 8, 7, 10),
the numbers 3, 6, 9, 10 form an increasing sublist of length 4. Erdés and
Szekeres proved in 1935 that every list of n2 4 1 distinct numbers contains
a monotone sublist of length at least n + 1. Let a3, ..., a,2,; be the list.
For each £, let x; be the maximum length of an increasing sublist ending
with a;, and let y, be the maximum length of a decreasing sublist ending
with a,. For the example above, the values of these parameters are

k |1 23456789 10
ax 3216549 87 10
Xk 11122 2 333 4
Yk 1231231231

If there is no monotone sublist of length n + 1, then x; and y; never
exceed n, and there are only n? possible pairs (x;, yi). Since there are n?+1
values of k, the Pigeonhole Principle implies that two pairs are the same:
(xi, yi) = (xj, y;) for somei < j. Ifa; < a;,thenx; > x;;ifa; > a;, theny; >
yi. This contradiction implies that a number exceeding » must appear in
one of the pairs. Since there is a list of n? distinct numbers having no
monotone sublist of length n + 1 (Exercise 17), the result is best possible. B
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10.7. Example. A domino tiling problem. A six by six checkerboard
with 36 squares can be covered exactly by 18 dominoes consisting of two
squares each; this is a tiling of the checkerboard by dominoes. We prove
that every such tiling can be cut between some pair of adjacent rows or
adjacent columns without cutting any dominoes. In the picture below, the
tiling can be cut along the middle horizontal line.

Consider a tiling. Every domino cuts one line between two adjacent
rows or between two adjacent columns. There are 18 dominoes and 10
lines that may be cut, so the average number of cuts per line is 1.8. Since
every set of numbers contains a number that is at most the average, some
line is cut at most once. This is not strong enough to prove the claim, as
it leaves the possibility that every line is cut at least once.

To complete the proof, we observe that every line is cut by an even
number of dominoes; this implies that a line cut by at most one domino is
not cut at all. The observation is easy: having an odd number of dominoes
crossing a line would leave an odd number of squares on each side to be
paired up by dominoes that don’t cross the line, but each set of dominoes
covers an even number of squares. ]

10.8. Example. The Chess Player Problem. A chess player wants to prac-
tice for a championship match over a period of 11 weeks. She wants to
play at least one game per day but at most 132 games in total. No matter
how she schedules the games, there must be a period of consecutive days
on which she plays a total of exactly 22 games.

We can study the total played on consecutive days by considering par-
tial sums. Let a; be the total number of games played on days 1 through
i, and set ap = 0. Then a; — a; is the total number of games played on days
i +1through j. We seek an i and a j such that a; + 22 = a;. This suggests
considering both {a;: 1 < j < 77} and {a; + 22: 0 < i < 76}. Since there
is at least one game each day, the numbers in {a;} are distinct, as are the
numbers in {a; + 22}. Hence a duplication among these 154 numbers im-
plies the desired result. Since a7; < 132, and a7 + 22 < 153, we have

154 numbers in [153], and some number must repeat. Because asg + 23
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could be as large as 154, this argument does not work to force a period of
consecutive days with exactly & games if k£ > 23. |

We often use the Pigeonhole Principle to prove existence results. Ear-
lier we proved such statements by building an example of the desired
object. The Pigeonhole Principle provides nonconstructive proofs of exis-
tence statements; it can also be an effective way to avoid case analysis.

Our examples suggest several remarks about using the Pigeonhole
Principle. The classes may have different sizes. Partial sums may help
with problems involving order or sums. An example showing that a claim
is best possible can suggest classes and objects for applying the Pigeonhole
Principle to prove the claim. Finally, the Pigeonhole Principle can be
combined with proof by contradiction or other techniques.

THE INCLUSION-EXCLUSION PRINCIPLE

The rules of sum and product used to solve elementary counting prob-
lems are not helpful for counting problems involving forbidden conditions,
because they lead to lengthy analysis by cases. In contrast, the Inclusion-
Exclusion Principle leads quickly to formulas that solve such problems.
The principle is based on the inclusion relation on the collection of subsets
of a finite set.

10.9. Problem. Derangements. A professor collects homework papers
from n students and returns them at random for peer grading. In this
case, “at random” means that each of the n! permutations is equally likely.
A permutation in which no student receives his or her own paper is a
derangement. What is the probability that a random permutation is a
derangement? [ |

10.10. Problem. Dice-rolling. We roll a six-sided die until each of the
numbers one through five have appeared at least once. What is the prob-
ability that we succeed in the first n rolls? [ ]

10.11. Problem. Euler totient. Given a positive integer m, let ¢(m) be
the number of elements of [m] that are relatively prime to m. The function
¢: N - N is the Euler totient function. How can we compute ¢(m)? 8

We begin by discussing the Euler totient for numbers with few
prime factors. Recall that m and r are relatively prime if and only if
ged(m,r) = 1. If m is a power of a prime p, then all numbers in [m] are
relatively prime to m except the multiples of p. There are m/p such mul-
tiples, so ¢(m) =m —m/p.
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Next suppose that m has precisely two prime factors, p and q. We
eliminate all m/p multiples of p and all m/q multiples of ¢ in [m], but
this means that we have eliminated all the multiples of pg twice. We add
these back in to correct the count and obtain ¢(m)=m—m/p—m/q+m/pq.

In general, m will have prime factors py, ..., p,. Initially we include
all of [m]. Excluding the multiples of each prime factor discards more
than once every element divisible by more than one of the prime factors.
When we then include the sets divisible by two prime factors, we will
have included too often the elements divisible by more than two of them.
Eventually the process of including and excluding will count each element
the proper number of times.

Before presenting the general formula for the totient function, we de-
velop the general setting for the Inclusion-Exclusion Principle. Consider
a universe U of objects, in which we want to count the objects that ap-
pear in none of the n subsets A, ..., A,. Each such subset corresponds to
a forbidden condition.

In the totient problem, the universe is [m], and the set A; is the set
of multiples of the ith prime factor. In the derangements problem, the
universe U is the collection of all permutations of [#]. In order to count
those with no fixed point, we will let A; € U be the set of permutations
fixing i, and then the derangements are precisely the permutations that
appear in none of these sets.

Let Ny denote the number of elements of U that appear in none of the
n specified subsets A1,..., A, of U. If n = 1, then N counts the elements
outside A;, so Ny = |U]| — |A4].

For n = 2, consider the Venn diagram below. We don’t want to count
elements in A; or Ap, so we subtract those from the total. This sub-
tracts the elements of A; N Ag twice, so we add those in again, obtaining
Ng = |U| — |A1] — |A2| + |A1 N Ag|. The Venn diagram makes it appar-
ent that every element outside A; U A; makes a net contribution of 1,
and every element inside A; U As makes a net contribution of 0. (To
count the elements belonging to at least one of the sets, the formula is
|A1] + |A2] — |A; N Ag|. Readers who have studied Chapter 9 should note
that dividing this by |U| yields the probability of A; U A2 when choosing a
random element of U.)
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Before deriving the general formula, we also discuss the case n = 3
in detail. The reader may use the Venn diagram below to keep track of
the “including” and “excluding” as we describe it.

Ny

Again we start with all of U. To omit the elements belonging to
each {A;}, we subtract |A;| + |Ag| + |A3| from |U|. Any element belong-
ing to more than one of the sets has been deleted more than once, so we
add |A; N Ag| + |A2 N Az + ]A1 N Asl to correct this. Now an element in
none of the sets contributes 1 to the count, an element in exactly one
set contributes 1 — 1 = 0, and an element in exactly two sets contributes
1-1—1+1 = 0, but an element in all three sets contributes1-1—-1-1+
1+ 1+ 1=1. We subtract |A; N A3 N A3| as a final correction. Thus the
inclusion-exclusion formula for Ny when there are three forbidden sets is

|UI=(1A1l+|A2|+]AsD)+ (1AL N Agl+]Az N As|+[A1 N Ag])—|A1 N Az N Agl.

In general, for each subset S of the indices 1,...,n, we weight
lﬂ.esA | negatively if |S| is odd and positively if |S| is even. The count
arising when S = @ is |U|, because each element is in every one of no sets.
Just as a sum over no terms is the additive identity 0 and a product over
no factors is the multiplicative identity 1, so an intersection over no sets
is the “intersective identity” U.

10.12. Theorem. (Inclusion-Exclusion Principle) Given a universe U of
items and subsets Aq, ..., A, of the items, the number N of items
belonging to none of the subsets is given by

No= Y (-S| 4.

S<ln} ies

Proof: We need only show that each item belonging to none of the sets
contributes 1 to the total and that all other items contribute 0. An item x
in none of the sets appears only in the term for § = @, so its contribution is
1. Otherwise, let T < [n] be the nonempty set of indices i such that x € A;.
In the formula, the item x is counted in the term for each subset of T. It
contributes +1 for each S C T of even size and —1 for each S € T of odd
size. Hence the total contribution for x is g (=)' = 31T (=% ('T).
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There are many ways to show that this sum is 0. We can treat it as
a special case of ), _, (;)»*, with y set to —1. By the Binomial Theorem,
the sum is (1 + y)’, and when y = —1 it equals 0 since ¢ > 0.
We also give a proof using a bijection. Choose x € T. Let A = {R C
T:|R| isodd} and B = {R € T:|R| iseven}. Given R € A, let f(R) =
—{x}ifx € R, and let f(R) = RU {x} if x ¢ R. Always f(R) has even
size. Furthermore, the same definition yields the inverse of f. Hence f
is a bijection, and |A| = |B|. ]

The Inclusion-Exclusion Principle is useful when (1) we can model
our problem as counting the elements outside some sets Ay, ..., A,, and
(2) the quantities |(;.s A;| are easy to compute.

10.13. Solution. Euler totient. Suppose that m has n distinct prime fac-
tors pi,..., p,. Within the universe U = [m], we define the set A; to be
the multiples of p;. The numbers relatively prime to m are the elements
in none of A,, ..., A,. To apply the Inclusion-Exclusion Formula, we need
the sizes of intersections of these sets. For the intersection of the sets in-
dexed by the elements of S C [n], we have |(,.s Ai| = m/[;cs pi- By the
Inclusion-Exclusion Principle, we thus have

dom) = No = T DIINA] = DT
ies Pi

SCln) ieS SCln]

For example, 60 = 22 . 3 . 5, so we compute

60 60 60 60 60 60 60
$(60) =60 — o — o~ — =+ =+ o+ 7~ 5o = 16.

Another formula for ¢ (m) appears in Exercise 30. ]

10.14. Solution. Derangements. We can model Problem 10.9 by writ-
ing the numbers 1, ..., n (for the papers) in the positions 1, ..., n (for the
students). We want to count the permutations of [»#] such that noi is in
position i. An instance of i in position i is a fixed point; the derangements
are the permutations with no fixed points.

Within the universe U of permutations of [n], let A; be the set of
permutations that leave / fixed. Because derangements have no fixed
points, D, = Ny. Consider a set § C [n] with |S| = k. A permutation lies
in all sets indexed by S if and only if it fixes {i : i € S}. It can permute the
other elements in any way (including fixing them), so |ﬂ,. s A,-| =(n-k).
There are () choices of § with size k, and we weight these contributions
by (=1)!¥, so the formula is

D, _Z( 1)'<( )(n—k)‘ n!g(—l)"/k!.
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Dividing by n! yields }_;_,(—1)*/k! for the probability of a derange-
ment. Surprisingly, the probability is almost independent of » and tends
to a nonzero limit as n grows. The alternating sum converges rapidly to
1/e, wheree = 2.71828 - - - (see Chapter 14). We discuss further properties
of derangements in Chapter 12. ]

In the derangements computation, the size of (),_; A; depends only
on |S|. This allows us to combine the terms for all sets S with |S| = k. The
factor (:) appears, multiplied by the size of each N — i € SA; with |S| = k.
We obtain a summation with n + 1 terms instead of a summation with 2"
terms. This simplification occurs often.

There are n* functions from a k-set A to an n-set B. Using combi-
natorial arguments, we counted the injective ones in Proposition 5.11.
These correspond to listing & distinct elements of B in order and assign-
ing them to ay, ..., a;, and there are n!/(n — k)! ways to do this. We use
the Inclusion-Exclusion Principle to count the surjective functions.

10.15. Example. Surjective functions. How many functions from A to B
are surjective? Let A; be the set of functions that omit the ith element
of B ={b),...,b,}). Given a set S C [n] of indices, [);.5 Ai is the set of
functions that omit the corresponding |S| elements of B. There are (n —
|S))* of these functions, since we can map A onto the remaining elements
without restriction (possibly missing more elements). When we combine
the (7) terms with |S| = j, for each j, we obtain 3 }_o(=1)/(})(n — j)* for
the number of surjective functions. ]

10.16. Solution. Dice-rolling. The Inclusion-Exclusion Principle applies
to events in a finite probability space as well as to sets in a finite universe.
When we normalize so that the total count of the universe is 1, we can in-
terpret counting probability outside certain events as counting elements
outside certain sets.

We roll a fair six-sided die » times and want to know the probability
that each of the values 1, 2, 3, 4, 5 appears during the experiment. If A; is
the event that i does not appear, we want the probability P (@) outside all
these events. The probability that we do not see one particular value is
(5/6)". The probability that k such events from {A;} occur, meaning that
k values fail to occur, is [(6 — k)/6]". This holds for each of the (;) choices
of k values, so the inclusion-exclusion formula yields

P(@) =1-5@)" +10(5)" — 10())" + 5(3)" — (3)"

For n = 5, 10, 15, 20, the probabilities are .015, .356, .698, .873, respec-
tively. The probability first exceeds .5 when n = 12. ]
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EXERCISES

The first 23 problems are related to the Pigeonhole Principle, the others to
Inclusion-Exclusion. The answers to most problems using the Inclusion-Exclusion
Principle must be left as summations.

10.1. (-) Suppose that during a major league baseball season there are 140,000
at-bats and 35,000 hits. Which of the following must be true?

a) There is some player who hits exactly .250.

b) There is some player who hits at least .250.

c) There is some player who hits at most .250.

10.2. Each year, the Grievance Committee consists of three professors. How many
professors must there be in the department to avoid having the same committee
in a period of eleven years?

10.3. Let S be a subset of {1, 2,...,3n} having size 2n + 1. Prove that S must
contain three consecutive numbers. Show that this is best possible by exhibiting
a set of size 2n for which the conclusion is false.

10.4. Let S be a set of n + 1 numbers in [2n]. Prove that S contains a pair of
relatively prime numbers. Show that this is best possible by exhibiting a set of
size n for which the conclusion is false.

10.5. (!) Prove that every set of seven distinct integers contains a pair whose sum
or difference is a multiple of 10.

10.6. Suppose that the numbers 1 through 10 appear in some order around a
circle. Prove that some set of three consecutive numbers sums to at least 17.

10.7. (!) The numbers 1 through 12 have fallen off the face of a clock and have
been replaced in some random order. Prove that some set of three consecutive
numbers has sum at least 20. Prove that some set of five consecutive numbers
has sum at least 33. For three consecutive numbers, use more detailed analysis
to determine whether it is possible for all the sums to be 19 or 20.

10.8. (!) Prove that every set of five points in the square of area 1 has two points
separated by distance at most +/2/2. Prove that this is best possible by exhibiting
five points with no pair less than +/2/2 apart. (Warning: Studying perturbations
of the set found for the second part does not solve the first part.)

10.9. Pigeonhole generalization. Let p, ..., px be natural numbers. Determine
the minimum » such that for every way of distributing n objects into classes
1,...,k, there is some i such that class i receives at least p; objects.

10.10. On a field 400 yards long, ten people each mark off football fields of length
100 yards. Prove that some point belongs to at least four of the fields.

10.11. (!) The fractional part of x is the amount by which it exceeds |x|. For
xeRandn eN,let S = {x,2x,...,(n —1x).

a) Prove that if some pair of numbers in S have fractional parts that differ by
at most 1/n, then some number in § is within 1/n of an integer.

b) Use part (a) to prove that some number in § is within 1/n of an integer.
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10.12. Let S be a set of n integers. Prove that S has a nonempty subset whose
sum is divisible by n. Show that this is best possible by exhibiting a set of n — 1
integers that has no nonempty subset whose sum is divisible by n.

10.13. (+) Consider a collection S of n positive integers summing to k. Call §
“full” if for every i € [k], S has a subset with sum i. Prove that if k < 2n — 1, then
S must be full. Show that this is best possible by exhibiting a set S of n numbers
summing to 2n that is not full.

10.14. Six students come to class. Prove that among the six there must be three
who all know each other or three who all don’t know each other.

10.15. Use congruence classes to determine the maximum size of a subset of [99]
that has no two numbers differing by 3.

10.16. (!) Given n,k € N, use congruence classes to determine the maximum size
of a subset of [#] that has no two numbers differing by k.

10.17. (!) Prove that the Erds-Szekeres result is best possible by constructing
for each n (with proof) a list of n? distinct numbers having no monotone sublist of
length n + 1.

10.18. Consider an exam with three true/false questions, in which every student
answers each question.

a) How many students are needed to guarantee that no matter how they an-
swer the questions, some two students agree on every question?

b) How many students are needed to guarantee that no matter how they
answer the questions, some two students agree on at least two questions? (Com-
ment: Parts (a) and (b) each require a proof for the upper bound and an example
for the lower bound.)

10.19. (!) The Key Problem. A private club has 90 rooms and 100 members. Keys
must be given to members such that each set of 90 members can be assigned to
90 distinct rooms whose doors they can open. Each key opens one door. The man-
agement wants to minimize the total number of keys. Prove that the minimum
number of keys is 990. (Hint: Consider the scheme where 90 of the members have
one key, and the remaining 10 members have keys to all 90 rooms. Prove that this
works and that no scheme with fewer keys works.)

10.20. (+) Generalize Example 10.8 to a player who plays on d consecutive days
for a total of at most b games. We want to know whether there must be a total of
exactly k games over some period of consecutive days, regardless of the schedule.
Determine a formula f(d, b) such that the argument of Example 10.8 works to
prove the answer is “Yes” ifk < f(d, b).

10.21. (+) In Example 10.8, the chess player plays at most 132 days over 77
days. The argument there guarantees existence of a period of consecutive days
with a total of exactly k games if k < 22. Using the Pigeonhole Principle and
congruence classes modulo &, prove that there are also periods with exactly k
games for k € {23, 24, 25}. Construct a 77-day schedule of games such that no
period of consecutive days has a total of exactly 26 games.

10.22. Givenm > 2n,let S be a set of m points on a circle with no two diametrically
opposite. Say that x € S is “free” if fewer than n points of § — x lie in the semicircle
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clockwise from x. Prove that S has at most n free points. (Hint: Reduce the
problem to the case m = 2n.)

10.23. Consider an n by n grid of dots at positions {(/, j): 1 <i <n,1<j <n}in
the plane. Each dot is colored black or white. How large must n be such that for
every way to color the dots, there is a rectangle whose four corners all have the
same color? (Comment: The answer requires a proof for the upper bound and an
example for the lower bound.)

10.24. How many ways are there to place 10 distinct people within three distinct
rooms? How many ways are there to place 10 distinct people within three distinct
rooms so that every room receives at least one person?

10.25. How many decimal n-tuples contain at least one each of {1, 2, 3}?

10.26. (!) Say that an integer is “full” if its base 10 representation contains at
least one of each digit 0, 1,...,9. For this problem, a representation with fewer
digits is considered a representation with m digits by adding leading Os. Derive a
summation formula for the number of full m-digit integers.

10.27. A bridge hand consists of 13 cards from a standard deck of 52 cards. What
is the probability that a bridge hand has at least one card in each suit? What is
the probability that it has no cards (a void) in at least one suit?

10.28. How many natural numbers less than 252 are relatively prime to 252?
10.29. How many natural numbers less than 200 have no divisor in {6, 10, 15}?

10.30. (!) Let ¢ (m) denote the Euler totient function (the number of elements of
{m] that are relatively prime to m). If p, g are distinct prime numbers, prove that
¢(pq) = ¢(p)¢9(q). In general, when P(m) denotes the set of distinct prime factors
of m, prove that ¢(m) =m l-[peP(m)(l —-1/p).

10.31. Let A,,.... A, be subsets of a universe U. Let T C [n] be a collection
of indices, and let N(T) be the number of elements of U that belong to the sets
indexed by T but to no others among Ay, ..., A,. By defining a new universe,
prove the following generalization of the inclusion-exclusion formula:

N(T) = Z (=1)Isi-II ﬂA,-|.

TCSClnl ieS

10.32. How many permutations of [n] have no odd number as a fixed point?

10.33. () A math department has n professors and 2n courses, each professor
teaching two courses each semester. How many ways are there to assign the
courses in the fall semester? How many ways are there to assign the courses in
the spring semester such that no professor teaches the same pair of courses in
the spring as in the fall? If all the assignments are equally likely, what is the
probability of this event?

10.34. (!) Given the five types of coins (pennies, nickels, dimes, quarters, half-
dollars), how many ways can one select n coins so that no coin is selected more
than 4 times? (Hint: Use inclusion-exclusion and selections with repetition.)

10.35. (!) Consider a set of n boys and n girls. Use inclusion-exclusion to derive
formulas for the number of ways to pair up the 2n people as lab partners and
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satisfy the following criteria. (Leave answers as summations.)

a) For each i, the ith tallest boy is not matched to the ith tallest girl (same-
sex pairs are allowed).

b) Same condition as (a), but also each pair has one person of each sex.

10.36. Given two each of n types of letters, how many distinguishable permuta-
tions are there such that no two consecutive letters are the same?

10.37. (!) How many ways are there to seat the people in n married couples around
a merry-go-round so that no person sits next to his or her spouse? (Rotations of
the seating arrangement are not distinguishable from each other.)

10.38. Let D, count the permutations of [n] with no fixed points. Let E¥ count the
permutations of [n] with exactly k fixed points, for 0 < k < n.

a) Derive a formula for E,’f in terms of {D;: 0 < j < n}.

b) Derive a formula for n! in terms of {D;: 0 < j < n}.

10.39. Use inclusion-exclusion to prove that 3  (—1)* (Z) =0ifn > 0. What
happens if n = 0?

10.40. Use inclusion-exclusion to prove that >, _ (—1) (2)2""‘ = 1. (Do not use
the Binomial Theorem.)

10.41. Use inclusion-exclusion and selections with repetition to prove that

L @C)=(5)




Chapter 11
Graph Theory

The “graphs” of graph theory differ from the graphs of functions.
Informally, a graph consists of “vertices” and connecting “edges”. For ex-
ample, we can think of people as vertices and join two people by an edge
if they have met. Graph theory helps answer questions about acquain-
tance, chemical bonding, electrical networks, transportation networks,
binary vectors, etc., along with those stated below. The techniques in-
clude induction, parity, extremality, counting two ways, the Pigeonhole
Principle, Inclusion-Exclusion, and even the Dart Board Problem.

11.1. Problem. The Konigsberg Bridge Problem. Some say that graph
theory was born in the city of Kénigsberg in 1736. Located on the Pregel
river, the parts of the city were linked by seven bridges as shown on the
left below. The citizens wondered whether they could leave home, cross
every bridge exactly once, and return home. This reduces to traversing
the figure on the right, with heavy dots representing land masses and
curves representing bridges. [ |

€6
(5]
és

e3 e7

Z

11.2. Problem. The Marriage Problem. Suppose there are n girls and n
boys at a party, and each girl likes some subset of the boys. Under what
conditions is it possible to match up the girls with the boys so that each
girl is matched to a boy whom she likes? ]

202
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11.3. Problem. The Platonic Solid Problem. A Platonic solid has congru-
ent regular polygons as faces and has the same number of edges meeting
at each corner. The tetrahedron, cube, and octahedron appear below. The
dodecahedron and icosahedron are the only other Platonic solids. Why
are these five the only ones? ]

L

4

11.4. Problem. The Art Gallery Problem. A modern art gallery has the
shape of a simple polygon in the plane, meaning a closed curve consisting
of segments that meet only at successive vertices. What is the maximum
number of stationary guards that may be needed to watch an art gallery
with n corners? [ ]

THE KONIGSBERG BRIDGE PROBLEM

To model the Konigsberg Bridge Problem, we represent the land
masses W, X, Y, Zbyaset V = {w, x, y, z}. We represent the seven bridges
by a set E = {ey, 3, e3, ¢4, €5, €5, €7}. We encode the information about
which land masses lie at the ends of each bridge by associating with each
e; € E a pair of elements of V. The relation between bridges and land
masses permits us to answer the specific question of Problem 11.1 even
before we formally define “graph”.

11.5. Solution. The Konigsberg Bridge Problem. The Swiss mathemati-
cian Leonhard Euler (1707-1783) observed in 1736 that Konigsberg had
no desired traversal. Every traversal passes through a land mass on the
way from each bridge to the next. Each time we visit a land mass, we en-
ter along one bridge and exit along another bridge. If we start and end in
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the same place, then we can also pair the first exit from that land mass
with the last entrance to it. Thus the desired traversal requires that the
number of bridges at each land mass is even. This condition fails in the
Konigsberg example, so the traversal does not exist. ]

Ifin Problem 11.1 we add bridge 8 from W to Y and bridge 9 from X to
Z, then there will be an even number of bridges at each land mass. Now
1,2,3,4,5,6,9,7, 8 is a traversal of the desired form. We will prove that
having an even number of bridges at each land mass, together with being
able to reach each bridge from every other, is sufficient for traversability.
First we introduce the fundamental terminology for graphs.

11.6. Definition. A graph G is a triple consisting of a finite vertex set
V(G), a finite edge set E(G), and a function 4 that assigns to each
edge e € E(G) an unordered pair of vertices. When 4 (e) = {u, v}, we
say that ¥ and v are the endpoints of ¢ and that e is incident to
and v. A graph G is simple if the function /s (e) is injective. In this
case, we write e = uv instead of hg(e) = {u, v}.

11.7. Example. The Konigsberg graph. The graph G in Problem 11.1 has
vertex set {w, x, y, z} and edge set {e;: 1 <i < 7}. The endpoints of ¢; for
1<i<T7are{x,w}, {x,w)}, {z, w}, {w, 2}, {y, w}, {x, y}, {y, 2}, respectively.
This graph is not simple; hg(e1) = hg(e2) and hg(es) = hg(eq). [ ]

There are more general models of graphs. Our model is finite and
does not permit directed edges or loops (edges with equal endpoints). Def-
inition 5.37 (functional digraph) does allow these possibilities. In this
chapter we consider only the model of graph in Definition 11.6.

The terms “vertex” and “edge” come from using graphs to model 3-
dimensional solids. We visualize graphs by drawing them in the plane.
To each vertex we assign a point; to each edge we assign a curve that joins
the points assigned to its vertices. We take this as an informal aid for
visualization; in Definition 11.60 we define drawings more precisely.

11.8. Definition. The degree of a vertex x € V(G), written d(x), is the
number of edges in G incident to x. A subgraph of a graph G is a
graph H such that V(H) C V(G) and E(H) C E(G); we also require
hy(e) = hg(e) for e € E(H). When H is a subgraph of G, we write
H C G and say “G contains H”.

11.9. Example. In the graph G of Problem 11.1, the degrees of w, x, y, z
are 5, 3, 3, 3, respectively. We have noted that we can make all the vertex
degrees even by adding two edges sharing no endpoints. We can also do
this by adding three edges with one common endpoint to obtain the graph
H shown below; G is a subgraph of H.
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We also show a subgraph F of G that has vertex degrees 2, 1, 1, 0 and
is a simple graph; F illustrates the Handshake Problem (Solution 3.26)

for two couples, with handshakes as edges. [ ]
X
€6
w ‘s y F
[ ]
Z

The full solution of the Konigsberg Bridge Problem uses vertex de-
grees and a precise notion of “traversal”. We must travel each bridge only
once, but we may visit land masses more than once.

11.10. Definition. A trailin a graph G is alist vg, e, v1, €2, ..., €, v; that
alternates between vertices and edges, such that (1) Ag(e;) = vi_1v;
for all i, and (2) edges ey, ..., & are distinct. The length of a trail is
the number of edges. A u, v-trail is a trail with first vertex « and last
vertex v; these are its endpoints.

A trail is closed if its endpoints are equal or if it has length 0. A
trail in a graph is maximal if it is not a sublist of a longer trail. A
graph is Eulerian if it has a closed trail containing all its edges.T

11.11. Example. In graph H of Example 11.9, w, e1, x, €6, y, €7, 2, €4, w is
a closed trail of length 4. It is not a maximal trail, since it we can insert
es, w, €19, y between y and e; to enlarge it. Note that trails can repeat
vertices, but not edges. This graph is Eulerian. ]

We have shown that all vertex degrees must be even when a graph is
Eulerian. Also necessary is that each edge be reachable from every other
edge, meaning that there is a trail containing both. Euler remarked that
these conditions are also sufficient, although no proof was published until
1871. To prove this, we use a lemma about maximal trails.

11.12. Lemma. If every vertex of a graph G has even degree, then every
maximal trail in G is closed.

Proof: Since a trail contributes degree two when it passes through a ver-
tex, a non-closed trail uses an odd number of edges at each endpoint. If
the endpoint has even degree, then a non-closed trail can be extended. We
have proved the contrapositive of the claim. ]

TThe name “Euler” is pronounced as “oiler”, because it is a Germanic name
like “Freud”, not a Greek name like “Euclid”.
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11.13. Theorem. A graph G is Eulerian if and only if each vertex has
even degree and each edge is reachable from every other.

Proof: We have argued that the conditions are necessary; we prove that
they are also sufficient.

Suppose that G satisfies the conditions. Let T be a maximal trail in
G; by Lemma 11.12, T is closed. If T does not include all of E(G), let G’
be the subgraph obtained from G by deleting E(T). Since every edge of
G is reachable from every other, there is a trail in G that starts with an
edge of T and contains an edge of G’; let e be the first edge of G’ on this
trail, and let v be the vertex it follows.

Since T has even degree at every vertex, every vertex also has even
degreein G’'. Let T’ be a maximal trail in G’ beginning from v along e. By
Lemma 11.12, T’ is closed and ends at v. Hence we may incorporate T’ to
obtain a trail properly containing 7. This contradicts the maximality of

T, so we conclude that T already contains all edges of G. |
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The proof of Theorem 11.13 uses extremality; we choose a maximal
trail. Choosing an extremal example is a basic technique of proof. In-
duction proofs often amount to showing that a statement has no smallest
counterexample. Our proofs of Fermat’s Little Theorem (Theorem 7.36)
and the Ballot Problem (Solution 9.10) illustrate other uses of extremality.

We close this section with further important observations about ver-
tex degrees. First, the vertex degrees and the number of edges satisfy a
simple equation proved by a counting argument.

11.14. Theorem. (Degree-sum Formula) If G is a graph with m edges,
then m = % > vevic) d(v).

Proof: Summing the degrees counts each edge twice, since each edge has
two endpoints and contributes to the degree of each endpoint. ]

11.15. Example. The d-dimensional cube Q,. The cube Q, is a simple
graph with 24 vertices that are the d-tuples of Os and 1s. Two vertices of
Q. form an edge if and only if they differ in exactly one coordinate. Since
each coordinate of a binary d-tuple can be changed in exactly one way,
each vertex has degree d. By the Degree-sum Formula, Q, thus has d2¢-1
edges. We show Qs and Q3 below. [ ]
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010 110

01 11 01 11

00 10 00 101

000 100

By the next corollary, the number of people in the world who have met
an odd number of people is even. Applications of this and the Degree-sum
Formula appear in Exercises 6-8 and Solutions 11.68 and 11.69.

11.16. Corollary. Every graph has an even number of vertices of odd
degree.

Proof: By the Degree-sum Formula, the sum of the degreesis even. Hence
the sum must have an even number of odd contributions. [ ]

ISOMORPHISM OF GRAPHS

Consider the four cities {New York, Chicago, San Francisco, Cham-
paign}. There are direct flights between Chicago and each of the other
three cities, and direct flights between San Francisco and New York, but
no direct flights between Champaign and either New York or San Fran-
cisco. We summarize this information by the graph below whose vertices
are the four cities, and whose edges represent direct service.

Consider also the four integers {7, 10, 15, 42}. We define a graph with
these integers as vertices, with two vertices forming an edge when they
have a common factor larger than 1.

Ok N 42 N

S.F. NY 10 15
Champaign

The picture shows that these two graphs have the same structure.
They are not the same graph, since their vertices have different names.
In order to treat them as the same object, we define a relation on the set
of graphs, prove that it is an equivalence relation, and observe that these
two graphs are in the same equivalence class.

To avoid complications, we define this relation only for simple graphs.
In a simple graph, we name each edge by its endpoints and treat the edge
set as a set of vertex pairs.
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11.17. Definition. An isomorphism from a simple graph G to a simple
graph H is a bijection f: V(G) — V(H) such that uv € E(G) if and
only if f(u)f(v) € E(H). We say “G is isomorphic to H”, written
G = H, if there is an isomorphism from G to H. The set of pairs
(G, H) such that G is isomorphic to H is the isomorphism relation.

When G = H, also H = G, so we may say “G and H are isomorphic”.
The adjective “isomorphic” applies only to pairs of graphs; the phrases
“G is isomorphic” and “an isomorphic graph” have no meaning.

11.18. Example. The two 4-vertex graphs below are isomorphic. Con-
sider mapping 1, 2, 3,4 to a, d, b, ¢, respectively. This changes the edges
12, 23, 34 into ad, db, bc, respectively. Since these are the edges of the sec-
ond graph, the vertex bijection is an isomorphism. Another isomorphism
maps 1,2, 3,4 to ¢, b, d, a, respectively. [ ]

1234C>4d
*—eo—o—o
ad b

We can describe isomorphism for simple graphs concisely using a re-
lation on the vertex set.

11.19. Definition. Vertices ¥ and v in a graph G are adjacent and are
neighbors if they are the endpoints of an edge. The adjacency re-
lation of G (defined on V(G)) is the set of ordered pairs (u, v) such
that 4 and v are adjacent.

The adjacency relation is symmetric, and every symmetric relation
is the adjacency relation of a graph. In the language of adjacency, sim-
ple graphs G and H are isomorphic if and only if there is a bijection
f: V(G) - V(H) that preserves the adjacency relation.

11.20. Proposition. The isomorphism relation is an equivalence relation
on the set of simple graphs.

Proof: The identity map on V(G) is an isomorphism from G to itself. If
f: V(G) — V(H) is an isomorphism from G to H, then f~! is an iso-
morphism from H to G. If f: V(F) - V(G) and g: V(G) — V(H) are
isomorphisms, then g o f is a bijection from V (F) to V(H) that preserves
the adjacency relation and hence is an isomorphism from F to H. Thus
the isomorphism relation is reflexive, symmetric, and transitive. [ ]

11.21. Definition. An isomorphism class of graphs is an equivalence
class of graphs under the isomorphism relation.
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11.22. Remark. Isomorphism classes. Comments about the structure of
a graph G also apply to every graph isomorphic to G. Some authors use
the informal expression “unlabeled graph” instead of “isomorphism class
of graphs”. The vertices of a graph drawn on paper are named by their
physical location; hence drawing a graph to illuminate its structure is
choosing a convenient member of its isomorphism class.

A graph represents its isomorphism class just as a fraction represents
arational number. Asking whether a given graph “is” G is asking whether
it is isomorphic to G. Similarly, we use the phrase “H is a subgraph of
G” to mean that H is isomorphic to a subgraph of G. In this sense, the
2-dimensional cube Qg is a subgraph of the 3-dimensional cube Q3 (see
Exercise 10), even though the 2-tuples used as vertices in Q5 are shorter
than the 3-tuples used as vertices in Gj. ]

We usually prove that two graphs are isomorphic by presenting a bi-
jection f and checking that it preserves the adjacency relation. Since
structural properties are determined by the adjacency relation, we can
prove that G and H are not isomorphic by finding some structural prop-
erty of one that fails for the other. They may have different vertex degrees,
different subgraphs, etc. Exhibiting a difference in structure proves that
no vertex bijection preserves the adjacency relation.

11.23. Example. Testing isomorphism. An isomorphism from G to H
must map every vertex v € V(G) to a vertex of H whose degree in H is
dg(v). Hence the lists of vertex degrees of isomorphic graphs must be
the same. For example, a graph whose vertices have degrees 1,1,1,3
cannot be isomorphic to a graph whose vertices have degrees 1, 1,2, 2,
even though each has four vertices and three edges.

Nevertheless, two graphs may have the same list of vertex degrees
and not be isomorphic. In each graph below, each vertex has degree 3.
Only graph C has three vertices that are pairwise adjacent, so it cannot
be isomorphic to any of the others. The others are pairwise isomorphic.

To show that A = B, we can verify that the bijection mapping
u,v,w,x,y,z to 1,3,5,2, 4, 6, respectively, is an isomorphism. Sending
u,v,w,x,y,zt06,4,2, 1,3, 5 yields another isomorphism.

Graphs A and D have the same vertex set but different adjacency
relations; xw € E(A), but xw ¢ E(D). Thus they are different graphs.
They are isomorphic, though, by an isomorphism that maps u, v, w, x, y, z

in V(A) to u, v, z, x, y, w in V(D), respectively. [ ]
u v ow 6 1 F4 w
Ry
X 2 4 3 x u
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When two simple graphs have many edges and have corresponding
vertex degrees, looking at the nonadjacent pairs of vertices may make it
easier to tell whether the graphs are isomorphic.

11.24. Definition. The complement G of a simple graph G is the graph
with vertex set V(G) and edge set {{u, v}: uv ¢ E(G)}.

u u
X W X EFow
11.25. Example. Two graphs are isomorphic if and only if their comple-
ments are isomorphic (Exercise 13). The vertices of the graphs below have
degree 5; in the complements the vertices have degree 2. The complement
of the graph on the left has two closed trails of length 4. The complement

of the other graph has no closed trail of length 4. Therefore, the graphs
are not isomorphic. ]

S

11.26. Example. Counting graphs. The number of pairs of distinct ver-
tices in a set of size n is (3). Each vertex pair may or may not form an
edge; (;) choices must be made to specify the adjacency relation. Thus
there are 2(2) simple graphs having a fixed set of n vertices.

For example, there are 64 graphs having a fixed set of four vertices.
These fall into only 11 isomorphism classes. Representatives of these
classes appear below; each graph is the complement of the other graph in
its column. Only one of these is isomorphic to its complement. ]

LN A XA
1 I&Z
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11.27. Remark. (optional) Isomorphism in mathematics generally de-
scribes a map between “equivalent” mathematical structures. An isomor-
phism between structures defined on sets S and T is a bijection between
S and T that preserves the essential properties of the structure. For
graphs, the sets S and T are the vertex sets, and the essential property is
the adjacency relation.

We can define isomorphism for general graphs. In a graph G, the
multiplicity of an unordered pair {u, v} € V(G) is the number of edges
in G with endpoints {u, v}. Two graphs G, H are isomorphic if there is a
bijection f: V(G) - V(H) that preserves multiplicity.

This agrees with our earlier definition for simple graphs, since uv is
an edge in a simple graph if and only if {«, v} has multiplicity 1. Describ-
ing a graph by its vertex set and multiplicities ignores the names of edges
but includes all information about the structure of the graph.

In the language of Definition 11.6, isomorphism requires two bijec-
tions f: V(G) » V(H) and f: E(G) — E(H) such that for all v € V(G)
and e € E(G), e is incident to v if and only if f(e) is incident to f(v). ®

CONNECTION AND TREES

For most concepts in this chapter, the distinction between simple
graphs and general graphs is unimportant. We now confine our atten-
tion to simple graphs, viewing an edge set as a set of unordered pairs of
vertices.

11.28. Definition, A path is a simple graph whose vertices can be listed
in an order so that two vertices are adjacent if and only if they are
consecutive in the list. The endpoints of a path are the first and last
vertices in such a list. A u, v-path is a path with endpoints « and v.

A cyecle is a simple graph whose vertices can be place at distinct
points of a circle so that two vertices are adjacent if and only if they
appear consecutively on the circle.

The length of a path or cycle is its number of edges. We use P,
and C,, respectively, to denote any representative of the isomorphism
class that is a path or cycle with n vertices.

The definitions of P, and C, make sense because paths with n ver-
tices are pairwise isomorphic, as are cycles with n vertices. The graph in
Example 11.18 is P4. We specify a path or a cycle (or a trail) as a subgraph
of a simple graph by listing its vertices in order, since a simple graph has
(at most) one edge with specified endpoints v;_; and v;. When we say that
the subgraph is a cycle, we do not need to repeat the last vertex. This is
consistent with the specification of cycles in permutations and functional
digraphs (see Definition 5.10 and Definition 5.37).




212 Chapter 11: Graph Theory

11.29. Example. Paths and cycles. The 3-dimensional cube Q3 (Example
11.15) contains subgraphs that are paths of lengths 0 through 7 and sub-
graphs that are cycles of lengths 4, 6, and 8. The graph G below contains
three cycles. For each pair s, t € V(G), there is an s, t-path. [ ]

11.30. Definition. A graph G is connected if for all u, v € V(G), there
is a u, v-path in G (otherwise, G is disconnected). A component
of G is a connected subgraph of G that is not contained in any other
connected subgraph. An isolated vertex is a vertex with degree 0.

11.31. Example. A connected graph, like that of Example 11.29, has one
component. The graph below has three components, and one of these is
an isolated vertex. The vertex sets of the components are {r}, {s, ¢, u, v, w},
and {x, y, z}. The subgraph consisting of the two components that are not
isolated vertices is a disconnected graph with no isolated vertex. ]

u r y
[ ]
s b4
t X
When studying paths in graphs, we say “u is connected to v” or “u and
v are connected” when G has a u, v-path. The connection relation on
V(G) is the set of ordered pairs (u, v) such that G has a u, v-path. For the

stronger statement that u and v are adjacent, we say “u and v are joined
by an edge”, not “u and v are connected”.

11.32. Example. A u, v-path and a v, w-path together need not form a
u, w-path. The concatenation of the u, v-path u, x, y, v and the v, w-path
v, Z,y, w is the trail u, x, y, v, z, y, w, which is not a path. Nevertheless,
this trail contains the u, w-path «, x, y, w. ]

w y u
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11.33. Proposition. If P is a v, v-path and P’ is a v, w-path, then P and
P’ together contain a u, w-path.

Proof: We use extremality. At least one vertex of P appears in P’, since
both contain v. Let x be the first vertex of P that appears in P’. Following
P from u to x and then P’ from x to w yields a u, w path, since no vertex
of P before x belongs to P’. ]

11.34. Proposition. Let G be a graph. The connection relation on V(G)
is an equivalence relation, and its equivalence classes are the vertex
sets of the components of G. If G has paths from one vertex to all
others, then G is connected.

Proof: Reflexive property: v is connected to v by a path of length 0. Sym-
metric property: If P is a u, v-path, then reversing P yields a v, u-path.
Transitive property: This is proved in Proposition 11.33.

Two vertices are in the same equivalence class if and only if they
belong to a path; a path is a connected subgraph and hence appears in
one component. If all vertices have paths to v, then Proposition 11.33
yields paths connecting all pairs of vertices. ]

We often discuss subgraphs obtained by deleting an edge or a vertex.

11.35. Definition. The subgraph of G obtained by deleting an edge ¢ is
G — e. The subgraph obtained by deleting a vertex v and all edges
containing v is G — v. The subgraph obtained by keeping all vertices
but deleting the edges of a subgraph H is G — E(H).

For example, if G is a cycle of length n with e € E(G) and v € V(G),
then G — e is a path of length n — 1, and G — v is a path of length n — 2.

11.36. Lemma. If ¢ is an edge of a connected graph G, then G — ¢ is
connected if and only if ¢ belongs to a cycle in G.

Proof: Suppose ¢ = xy € E(G), and let G’ = G — e. If G — ¢ is connected,
then x and y belong to the same component in G’, so G’ contains an x, y-
path, which completes a cycle with ¢ in G.

Conversely, suppose ¢ belongs to a cycle C. Choose u, v € V(G). Be-
ing connected, G has a u, v-path P. If P does not contain e, then P also
exists in G’. If P contains e, suppose by symmetry that P reaches x be-
fore y when traveled from « to v. Since G’ contains a u, x-path along P,
an x, y-path along C, and a y, v-path along P, the transitivity of the con-
nection relation implies that G — ¢ has a u, v-path. Since u, v were chosen
arbitrarily from V(G), we have proved that G — e is connected. ]
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A maximal object of a particular type is one that is not contained in
any other object of that type. Earlier we studied maximal trails in graphs,
and components are maximal connected subgraphs. A maximal path in
a graph is one that cannot be extended by adding a vertex at either end.
Every path of maximum length is a maximal path, but maximal paths
need not have maximum length: in Example 11.29, q, x, b is a maximal
path that does not have maximum length. Considering maximal paths
can lead to short proofs.

11.37. Lemma. If every vertex of G has degree at least two, then G
contains a cycle.

Proof: Since V(G) is finite, we can choose a maximal path P. Let v be an
endpoint of P. Since d(v) > 2, v has a neighbor « that is not a neighbor
of v on P. Since we cannot extend P to reach a new vertex from v, the
vertex u already belongs to P, and the edge vu completes a cycle with the
u, v-portion of P. [ |

If we allowed infinite vertex sets, this proposition would not hold.
Consider V(G) = Z and E(G) = {xy : y —x = 1}. This infinite graph
contains no cycle (it is a single “path” that extends infinitely in both di-
rections), but every vertex has degree 2.

How many edges must a graph with n vertices have in order to be
connected? Because deleting an edge of a cycle cannot disconnect a graph
(Lemma 11.36), the minimal connected graphs have no cycles.

11.38. Definition. A tree is a connected graph with no cycles. A leaf is
a vertex of degree 1. A spanning tree of a graph G is a subgraph of
G that is a tree containing all vertices of G.

Gustav Kirchhoff (1824-1887) introduced spanning trees in connec-
tion with his work on electrical networks. Every connected graph has a
spanning tree. This follows from Lemma 11.36: if G is connected, then
deleting edges of cycles until no cycles remain produces a subgraph of G
that is connected, has no cycles, and contains all vertices of G.
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11.39. Lemma. Every tree with at least two vertices has a leaf, and
deleting a leaf from a tree yields a tree with one less vertex.

Proof: Let G be a tree with n vertices, where n > 2. By the contrapositive
of Lemma 11.37, a graph with no cycles has a vertex of degree less than
two. Since G is connected and has more than one vertex, it has no vertex
of degree 0, so it has aleaf x. Let G' = G — x.

We claim that G’ is a tree with n — 1 vertices. We cannot create a cycle
by deleting a vertex, so we need only show that G’ is connected. Consider
distinct vertices u, v € V(G’). Because G is connected, there is a u, v-path
P in G. Since internal vertices along a path have degree at least 2, P
cannot contain x. Hence P is contained in G'. ]

’—O—O—Ix—O—H
u v
11.40. Theorem. Every tree with n vertices has n — 1 edges.

Proof: We use induction on n. A tree with 1 vertex has no edges. For
the induction step, we consider n > 1 and assume that trees with n — 1
edges have n — 2 vertices. If G is a tree with n vertices, then Lemma 11.39
yields a leaf x and a tree G’ = G — x with n — 1 vertices. By the induction
hypothesis, G’ has n — 2 edges. Since x appears in only one edge, we
conclude that G has n — 1 edges. ]

Since deleting a leaf yields a smaller tree, each tree with n+ 1 vertices
arises from some tree with n vertices by adding an edge to a new vertex.
This allows us to write an inductive proof about trees by “growing a leaf”
(from an arbitrary vertex); all trees of the larger size will be considered.

BIPARTITE GRAPHS

Our next class of graphs includes all trees and d-dimensional cubes.

11.41. Definition. A set S C V(G) is an independent set in a graph G
if uv ¢ E(G) for all u,v € S (S may be empty). A bipartite graph
with bipartition X, Y is a graph G such that V(G) = XUY and X, Y
are disjoint (possibly empty) independent sets. We call X and Y the
partite sets or parts of the bipartition.

11.42. Example. The d-dimensional cube Q; is bipartite. Let X be the
set of vertices whose encoding as a binary d-tuple has an odd number of
ones. Let Y consist of those with an even number of ones. In each edge
of Qg, the parity of the number of ones in the encoding is different at the
two endpoints. Hence X and Y are independent sets. a
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11.43. Proposition. Every tree is bipartite.

Proof: We use induction on the number of vertices. A tree with one vertex
has a bipartition with one set empty. For the induction step, suppose
that every tree with n vertices is bipartite, and let T be a tree with n +
1 vertices. By Lemma 11.39, T has a leaf x such that T — x is a tree
T’ with n vertices. Let y be the neighbor of x in T. By the induction
hypothesis, we can partition V(7’) into two independent sets X and Y,
with y € Y. Placing x in X yields the desired bipartition of V(T), since
the only neighbor of x isin Y. ]

A disconnected bipartite graph has more than one bipartition, but
a connected bipartite graph has only one. The parts or partite sets of a
bipartition are not themselves called “partitions”, just as the teams in a
sports league are not themselves called “leagues”.

Bipartite graphs have a simple structural characterization using an
obvious necessary condition that we prove is also sufficient.

11.44. Theorem. A graph is bipartite if and only if it contains no cycle of
odd length.

Proof: We use “odd cycle” for “cycle of odd length”. To prove that the con-
dition is necessary, consider a bipartite graph G. Every trail in a bipartite
graph alternates between the two partite sets of a bipartition. Hence 